Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0. Complements need not be unique. A relatively complemented lattice is a lattice such that every interval [c, d], viewed as a bounded lattice in its own right, is a complemented lattice. An orthocomplementation on a complemented lattice is an involution that is order-reversing and maps each element to a complement. An orthocomplemented lattice satisfying a weak form of the modular law is called an orthomodular lattice. In bounded distributive lattices, complements are unique. Every complemented distributive lattice has a unique orthocomplementation and is in fact a Boolean algebra. A complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b such that a ∨ b = 1 and a ∧ b = 0. In general an element may have more than one complement. However, in a (bounded) distributive lattice every element will have at most one complement. A lattice in which every element has exactly one complement is called a uniquely complemented lattice A lattice with the property that every interval (viewed as a sublattice) is complemented is called a relatively complemented lattice. In other words, a relatively complemented lattice is characterized by the property that for every element a in an interval [c, d] there is an element b such that a ∨ b = d and a ∧ b = c. Such an element b is called a complement of a relative to the interval. A distributive lattice is complemented if and only if it is bounded and relatively complemented. The lattice of subspaces of a vector space provide an example of a complemented lattice that is not, in general, distributive. De Morgan algebra An orthocomplementation on a bounded lattice is a function that maps each element a to an "orthocomplement" a⊥ in such a way that the following axioms are satisfied: Complement law a⊥ ∨ a = 1 and a⊥ ∧ a = 0.
Viktor Kuncak, Simon Guilloud, Sankalp Gambhir
We study the proof theory and algorithms for orthologic, a logical system based on ortholattices, which have shown practical relevance in simplification and normalization of verification conditions. Ortholattices weaken Boolean algebras while having po ...
Viktor Kuncak, Simon Guilloud, Sankalp Gambhir