Résumé

In statistics, pooled variance (also known as combined variance, composite variance, or overall variance, and written ) is a method for estimating variance of several different populations when the mean of each population may be different, but one may assume that the variance of each population is the same. The numerical estimate resulting from the use of this method is also called the pooled variance. Under the assumption of equal population variances, the pooled sample variance provides a higher precision estimate of variance than the individual sample variances. This higher precision can lead to increased statistical power when used in statistical tests that compare the populations, such as the t-test. The square root of a pooled variance estimator is known as a pooled standard deviation (also known as combined standard deviation, composite standard deviation, or overall standard deviation). In statistics, many times, data are collected for a dependent variable, y, over a range of values for the independent variable, x. For example, the observation of fuel consumption might be studied as a function of engine speed while the engine load is held constant. If, in order to achieve a small variance in y, numerous repeated tests are required at each value of x, the expense of testing may become prohibitive. Reasonable estimates of variance can be determined by using the principle of pooled variance after repeating each test at a particular x only a few times. The pooled variance is an estimate of the fixed common variance underlying various populations that have different means. We are given a set of sample variances , where the populations are indexed ,

Assuming uniform sample sizes, , then the pooled variance can be computed by the arithmetic mean: If the sample sizes are non-uniform, then the pooled variance can be computed by the weighted average, using as weights the respective degrees of freedom (see also: Bessel's correction): The unbiased least squares estimate of (as presented above), and the biased maximum likelihood estimate below: are used in different contexts.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (26)
PHYS-442: Modeling and design of experiments
In the academic or industrial world, to optimize a system, it is necessary to establish strategies for the experimental approach. The DOE allows you to choose the best set of measurement points to min
MATH-234(d): Probability and statistics
Ce cours enseigne les notions élémentaires de la théorie de probabilité et de la statistique, tels que l'inférence, les tests et la régression.
MATH-234(b): Probability and statistics
Ce cours enseigne les notions élémentaires de la théorie de probabilité et de la statistique, tels que l'inférence, les tests et la régression.
Afficher plus
Séances de cours associées (42)
Propagation de l'incertitude : Estimation et distribution
Discute de l'estimation et de la propagation de l'incertitude dans les variables aléatoires et de l'importance de gérer l'incertitude dans l'analyse statistique.
Inférence et modèles mixtes
Couvre l'estimation des points, les intervalles de confiance et les tests d'hypothèses pour les fonctions lisses à l'aide de modèles mixtes et de lissage des splines.
Réseaux Convolutifs : Motivation & Idées
Explore la motivation et les idées derrière les réseaux convolutifs, en mettant l'accent sur le partage du poids et la mise en commun des couches.
Afficher plus