Phyllotaxiethumb|Principaux types de disposition : opposée, alterne, verticillée. La phyllotaxie (du grec ancien : , « feuille », et , « arrangement ») est l’ordre dans lequel sont implantés les feuilles ou les rameaux sur la tige d’une plante, ou, par extension, la disposition des éléments d’un fruit, d’une fleur, d’un bourgeon ou d’un capitule. La phyllotaxie désigne également la science qui étudie ces arrangements.
Encyclopédie en ligne des suites de nombres entiersL'encyclopédie en ligne des suites de nombres entiers (originellement en anglais On-Line Encyclopedia of Integer Sequences, couramment abrégé sous le sigle OEIS) est un site web permettant d'effectuer gratuitement des recherches parmi une base de données de suites d'entiers présentant un intérêt mathématique ou parfois simplement ludique. Dans cette forme et cette présentation, c'est la plus grande du monde (en 2012). Elle est consultée des milliers de fois chaque jour.
Suite d'entiersEn mathématiques, une suite d'entiers est une séquence (c'est-à-dire une succession ordonnée) de nombres entiers. Une suite d'entiers peut être précisée explicitement en donnant une formule pour son n-ième terme générique, ou implicitement en donnant une relation entre ses termes. Par exemple la suite de Fibonacci (0, 1, 1, 2, 3, 5, 8, 13, ...) peut être définie : implicitement, par récurrence : ; explicitement, par la formule de Binet : .
Suite de LucasEn mathématiques, les suites de Lucas U(P, Q) et V(P, Q) associées à deux entiers P et Q sont deux suites récurrentes linéaires d'ordre 2 à valeurs entières qui généralisent respectivement la suite de Fibonacci et celle de Fibonacci-Lucas, correspondant aux valeurs P = 1 et Q = –1. Elles doivent leur nom au mathématicien français Édouard Lucas. Soient P et Q deux entiers non nuls tels que (pour éviter les cas dégénérés). Les suites de Lucas U(P, Q) et V(P, Q) sont définies par les relations de récurrence linéaire et Notons l'une des deux racines carrées de Δ (éventuellement dans C).