In mathematics, signed frequency (negative and positive frequency) expands upon the concept of frequency, from just an absolute value representing how often some repeating event occurs, to also have a positive or negative sign representing one of two opposing orientations for occurrences of those events. The following examples help illustrate the concept:
For a rotating object, the absolute value of its frequency of rotation indicates how many rotations the object completes per unit of time, while the sign could indicate whether it is rotating clockwise or counterclockwise.
Mathematically speaking, the vector has a positive frequency of +1 radian per unit of time and rotates counterclockwise around the unit circle, while the vector has a negative frequency of -1 radian per unit of time, which rotates clockwise instead.
For a harmonic oscillator such as a pendulum, the absolute value of its frequency indicates how many times it swings back and forth per unit of time, while the sign could indicate in which of the two opposite directions it started moving.
For a periodic function represented in a Cartesian coordinate system, the absolute value of its frequency indicates how often in its domain it repeats its values, while changing the sign of its frequency could represent a reflection around its y-axis.
Let be a nonnegative angular frequency with units of radians per unit of time and let be a phase in radians. A function has slope When used as the argument of a sinusoid, can represent a negative frequency.
Because cosine is an even function, the negative frequency sinusoid is indistinguishable from the positive frequency sinusoid
Similarly, because sine is an odd function, the negative frequency sinusoid is indistinguishable from the positive frequency sinusoid or
Thus any sinusoid can be represented in terms of positive frequencies only.
The sign of the underlying phase slope is ambiguous.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course introduces the analysis and design of linear analog circuits based on operational amplifiers. A Laplace early approach is chosen to treat important concepts such as time and frequency resp
En mathématiques et en traitement du signal, la transformation de Hilbert, ici notée , d'une fonction de la variable réelle est une transformation linéaire qui permet d'étendre un signal réel dans le domaine complexe, de sorte qu'il vérifie les équations de Cauchy-Riemann. La transformation de Hilbert tient son nom en honneur du mathématicien David Hilbert, mais fut principalement développée par le mathématicien anglais G. H. Hardy.
vignette|250px|Les quatre premières sommes partielles de la série de Fourier pour un signal carré. vignette|250px|Le premier graphe donne l'allure du graphe d'une fonction périodique ; l'histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse mathématique, les séries de Fourier sont un outil fondamental dans l'étude des fonctions périodiques. C'est à partir de ce concept que s'est développée la branche des mathématiques connue sous le nom d'analyse harmonique.
En mathématiques, une fonction périodique est une fonction qui lorsqu'elle est appliquée à une variable, reprend la même valeur si on ajoute à cette variable une certaine quantité fixe appelée période. Des exemples de telles fonctions peuvent être obtenus à partir de phénomènes périodiques, comme l'heure indiquée par la petite aiguille d'une horloge, les phases de la lune, etc. thumb|La fonction sinus est périodique de période 2π.
Couvre la théorie des méthodes numériques pour l'estimation des fréquences sur les signaux déterministes, y compris la série et la transformation de Fourier, la transformation de Fourier discret et le théorème d'échantillonnage.
A ring of N identical phase oscillators with interactions between L-nearest neighbors is considered, where L ranges from 1 (local coupling) to N/2 (global coupling). The coupling function is a simple sinusoid, as in the Kuramoto model, but with a minus sig ...
In this paper, the detection of a small reflector in a randomly heterogeneous medium using secondharmonic generation is investigated. The medium is illuminated by a time-harmonic plane wave at frequency ω. It is assumed that the reflector has a nonzero sec ...
We develop a least mean-squares (LMS) diffusion strategy for sensor network applications where it is desired to estimate parameters of physical phenomena that vary over space. In particular, we consider a regression model with space-varying parameters that ...