Concepts associés (16)
Principe local-global
Pour le point de vue de la géométrie différentielle sur cette notion, voir l'article Passage du local au global. En mathématiques, et plus particulièrement en théorie algébrique des nombres et en géométrie algébrique, le principe local-global consiste à essayer de reconstituer une information sur un objet global à partir d'informations sur des objets locaux associés (ses localisations en tous les idéaux premiers), censées être plus faciles à obtenir. Ce théorème porte sur les formes quadratiques sur le corps global des nombres rationnels.
Groupe algébrique
En géométrie algébrique, la notion de groupe algébrique est un équivalent des groupes de Lie en géométrie différentielle ou complexe. Un groupe algébrique est une variété algébrique munie d'une loi de groupe compatible avec sa structure de variété algébrique. Un groupe algébrique sur un corps (commutatif) K est une variété algébrique sur munie : d'un morphisme de K-variétés algébriques (appelé aussi multiplication) .
Programme de Langlands
En mathématiques, le programme de Langlands est encore, au début du , un domaine de recherche actif et fertile en conjectures. Ce programme souhaite relier la théorie des nombres aux représentations de certains groupes. Il a été proposé par Robert Langlands en 1967. La première étape du programme, réalisée bien avant les travaux de Langlands, peut être vue comme la théorie des corps de classes.
André Weil
André Weil, né le à Paris et mort à Princeton (New Jersey, États-Unis) le , est une des grandes figures parmi les mathématiciens du . Connu pour son travail fondamental en théorie des nombres et en géométrie algébrique, il est un des membres fondateurs du groupe Bourbaki. Il est le frère de la philosophe Simone Weil et père de l'écrivaine Sylvie Weil. vignette|gauche|La famille Weil en 1916. André Weil est le fils aîné d'une famille bourgeoise, unie, raisonnablement aisée et agnostique, d'origine juive alsacienne du côté de son père Bernard et juive russe du côté de sa mère Selma Reinherz.
Homological algebra
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of .
Emmy Noether
Amalie Emmy Noether ( – ) est une mathématicienne allemande spécialiste d'algèbre abstraite et de physique théorique. Considérée par Albert Einstein comme , elle a révolutionné les théories des anneaux, des corps et des algèbres. En physique, le théorème de Noether explique le lien fondamental entre la symétrie et les lois de conservation et est considéré comme aussi important que la théorie de la relativité. Emmy Noether naît dans une famille juive d'Erlangen (à l'époque dans le royaume de Bavière).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.