Résumé
En mathématiques, le programme de Langlands est encore, au début du , un domaine de recherche actif et fertile en conjectures. Ce programme souhaite relier la théorie des nombres aux représentations de certains groupes. Il a été proposé par Robert Langlands en 1967. La première étape du programme, réalisée bien avant les travaux de Langlands, peut être vue comme la théorie des corps de classes. La loi de réciprocité d'Artin s'applique à une extension de corps de nombres dont le groupe de Galois est abélien, et considère les représentations de dimension 1 de ce groupe de Galois à valeurs dans le groupe multiplicatif du corps de base. Plus précisément, des fonctions L associées à ces représentations unidimensionnelles sont identiques à certaines séries L de Dirichlet (les analogues de la fonction zêta de Riemann construites à partir des caractères de Dirichlet). La correspondance entre ces différentes sortes de fonctions L constitue la loi de réciprocité d'Artin. Pour les groupes de Galois non-abéliens et pour leurs représentations de dimensions plus élevées, on peut encore définir les fonctions L d'une manière naturelle : les fonctions L d'Artin. Le premier pas de Langlands fut de trouver la généralisation appropriée des fonctions L de Dirichlet qui permettrait la formulation de l'énoncé d'Artin dans un cadre plus général. Auparavant, Hecke avait relié les fonctions L de Dirichlet avec les formes automorphes (fonctions holomorphes sur le demi-plan supérieur de C qui satisfont certaines équations fonctionnelles). Langlands généralisa alors celles-ci aux représentations cuspidales automorphes, qui sont certaines représentations irréductibles de dimension infinie du groupe général linéaire GL sur l'anneau adélique de Q (cet anneau garde une trace de tous les complétés de Q, voir nombres p-adiques). Langlands associa des fonctions L à ces représentations automorphes, et conjectura que chaque fonction L d'Artin issue d'une représentation de dimension finie d'un groupe de Galois d'un corps de nombres est égale à une fonction L issue d'une représentation cuspidale automorphe.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.