Isotope fertileUn isotope fertile est un isotope qui peut produire un isotope fissile à la suite de la capture d'un neutron, directement, ou après une désintégration bêta. Les deux isotopes fertiles présents dans la nature, que l'on peut utiliser dans un réacteur nucléaire, sont le thorium 232 et l'uranium 238. L'isotope fertile le plus connu est l'isotope majoritaire de l'uranium, l'U238, qui représente 99.3% en masse de l'uranium naturel. Du fait de son mélange avec le nucléide fissile U235, ce nucléide a contribué dès les premiers réacteurs nucléaires à produire du plutonium.
PlutoniumLe plutonium est l'élément chimique de symbole Pu et de numéro atomique 94. C'est un métal radioactif transuranien de la famille des actinides. Il se présente sous la forme d'un solide cristallisé dont les surfaces fraîches sont gris argenté mais se couvrent en quelques minutes, en présence d'humidité, d'une couche terne de couleur grise, tirant parfois sur le vert olive, constituée d'oxydes et d'hydrures ; l'accroissement de volume qui en résulte peut atteindre 70 % d'un bloc de plutonium pur, et la substance ainsi formée tend à se désagréger en une poudre pyrophorique.
Rendement de produit de fissionLa fission nucléaire divise des noyaux lourds tels que des noyaux d'uranium ou de plutonium en deux noyaux plus légers, appelés produits de fission. Le rendement de produit de fission désigne la fraction de produit de fission produit par fission. Ce rendement peut être défini : pour chaque isotope par élément chimique produit sous la forme de différents isotopes, ayant des nombres de masse différents mais un même numéro atomique. par noyau de nombre de masse donné, sans prendre en compte le numéro atomique.
Combustible MOXLe combustible MOX (ou MOx) est un combustible nucléaire constitué d'environ 8,5 % de plutonium et 91,5 % d'uranium appauvri. Le terme MOX est l'abréviation de « mélange d'oxydes » (ou mixed oxides en anglais) car le combustible MOX contient plus exactement du dioxyde de plutonium (PuO2) et du dioxyde d'uranium appauvri (UO2). Il se présente sous forme de poudre, granulés ou pastilles. Actuellement, le MOX n'est produit que par l'usine Melox du groupe français Orano.
Chaîne de désintégrationvignette|Différents modes de désintégration radioactive : radioactivités α, β et β, capture électronique (ε), émission de neutron (n) et émission de proton (p). N et Z sont le nombre de neutrons et le nombre de protons des noyaux considérés. Une chaîne de désintégration, ou chaîne radioactive, ou série radioactive, ou désintégration en cascade, ou encore filiation radioactive, est une succession de désintégrations d'un radioisotope jusqu'à un élément chimique dont le noyau atomique est stable (par conséquent non radioactif), généralement le plomb (Pb), élément le plus lourd possédant des isotopes stables.
NeptuniumLe neptunium est un élément chimique de synthèse de symbole Np et de numéro atomique 93. Élément métallique radioactif, le neptunium est le premier des transuraniens et appartient à la famille des actinides. Son isotope le plus stable, le neptunium 237, est produit dans les réacteurs nucléaires. On le trouve aussi sous forme de traces dans le minerai d'uranium. Il fut découvert en 1940 à l'Université de Californie. Comme il vient après l'uranium dans le tableau périodique, il fut baptisé en référence à la planète Neptune, qui vient après Uranus dans le système solaire.
Uranium 234L’uranium 234, noté U, est l'isotope de l'uranium dont le nombre de masse est égal à 234 : son noyau atomique compte et avec un spin 0+ pour une masse atomique de . Il est caractérisé par un excès de masse de , et une énergie de liaison nucléaire par nucléon de . Son abondance naturelle est de (0,0054 %), l'uranium naturel étant constitué à 99,2742 % d' avec lequel il est en équilibre séculaire. Un gramme d' présente une radioactivité de . C'est l'isotope de loin le plus radioactif dans l'uranium naturel.
Trace (radioisotope)On parle de trace radioisotopique lorsqu'un radioisotope est présent à des quantités infimes dans le milieu analysé : c'est une mention qualitative qui n'est pas évaluée quantitativement, par exemple du point de vue de la fraction massique. Dans le milieu naturel, de tels radioisotopes peuvent provenir de la désintégration naturelle de noyaux plus lourds, comme le thorium 231 issu de l'uranium 235, ou les autres isotopes de sa filiation radioactive.
Minor actinideThe minor actinides are the actinide elements in used nuclear fuel other than uranium and plutonium, which are termed the major actinides. The minor actinides include neptunium (element 93), americium (element 95), curium (element 96), berkelium (element 97), californium (element 98), einsteinium (element 99), and fermium (element 100). The most important isotopes of these elements in spent nuclear fuel are neptunium-237, americium-241, americium-243, curium-242 through -248, and californium-249 through -252.
Radioactivité de clustersLa radioactivité de clusters (aussi nommée radioactivité des particules lourdes ou radioactivité d'ions lourds) est un type (rare) de décroissance radioactive, dans lequel un noyau atomique parent avec A nucléons et Z protons émet un « cluster » (agrégat nucléaire) de Ne neutrons et Ze protons plus lourd qu’une particule alpha, mais plus léger qu’un fragment typique de fission binaire. Du fait de la perte de protons du noyau parent, le noyau fils a un nombre de masse Af = A - Ae et un numéro atomique Zf = Z - Ze où Ae = Ne + Ze.