Segment sphériqueEn géométrie, un segment sphérique est le solide défini en coupant une boule avec une paire de plans parallèles. La surface du segment sphérique à l'exclusion des bases est appelée zone sphérique. Le segment sphérique est donc la partie de l’espace limitée par une zone sphérique et deux disques. Si le rayon de la sphère est appelé R, les rayons des bases des segments sphériques sont r1 et r2 et la hauteur du segment sphérique (la distance d'un plan parallèle à l'autre) appelée h, alors le volume du segment sphérique est : Lorsqu'un des plans est tangent à la sphère, on parle de segment sphérique à une base.
Onglet sphériqueEn géométrie, un onglet sphérique est le solide découpé dans un boule par deux demi-plans ayant pour frontière le même diamètre. Plus précisément, ces demi-plans découpent dans la boule deux onglets sphériques, un, plus petit qu'un hémisphère, est l'onglet mineur, l'autre est l'onglet majeur. Un onglet sphérique est une portion de boule interceptée par un dièdre dont l'arête passe par le centre de la sphère. Son angle dièdre α et le rayon r de la sphère sont les deux dimensions caractérisant un onglet sphérique.
Secteur sphériqueEn géométrie, un secteur sphérique est une portion de sphère - plus exactement de boule - délimitée par un demi-cône de révolution dont le sommet coïncide avec le centre de la sphère. C'est un solide de révolution dont la frontière est constituée d'une portion de cône et d'une calotte sphérique. Plus précisément, le demi-cône découpe dans la boule deux solides, l'un, convexe, dont le volume est inférieur à une demi-boule est appelé secteur mineur, l'autre est appelé secteur majeur.
StéradianLe stéradian (symbole : sr) est l'unité de mesure des angles solides dans le Système international. Son nom est partiellement dérivé du grec ancien στερεός (stereos) « solide, dur, cubique ». Le Bureau international des poids et mesures (BIPM) définit le stéradian comme suit : Sa définition française officielle est : Autrement dit, un angle solide de 1 stéradian délimite sur une sphère de rayon 1, à partir du centre de cette sphère, une surface d'aire 1.