In mathematics, the Cartan decomposition is a decomposition of a semisimple Lie group or Lie algebra, which plays an important role in their structure theory and representation theory. It generalizes the polar decomposition or singular value decomposition of matrices. Its history can be traced to the 1880s work of Élie Cartan and Wilhelm Killing.
Let be a real semisimple Lie algebra and let be its Killing form. An involution on is a Lie algebra automorphism of whose square is equal to the identity. Such an involution is called a Cartan involution on if is a positive definite bilinear form.
Two involutions and are considered equivalent if they differ only by an inner automorphism.
Any real semisimple Lie algebra has a Cartan involution, and any two Cartan involutions are equivalent.
A Cartan involution on is defined by , where denotes the transpose matrix of .
The identity map on is an involution. It is the unique Cartan involution of if and only if the Killing form of is negative definite or, equivalently, if and only if is the Lie algebra of a compact semisimple Lie group.
Let be the complexification of a real semisimple Lie algebra , then complex conjugation on is an involution on . This is the Cartan involution on if and only if is the Lie algebra of a compact Lie group.
The following maps are involutions of the Lie algebra of the special unitary group SU(n):
The identity involution , which is the unique Cartan involution in this case.
Complex conjugation, expressible as on .
If is odd, . The involutions (1), (2) and (3) are equivalent, but not equivalent to the identity involution since .
If is even, there is also .
Let be an involution on a Lie algebra . Since , the linear map has the two eigenvalues . If and denote the eigenspaces corresponding to +1 and -1, respectively, then . Since is a Lie algebra automorphism, the Lie bracket of two of its eigenspaces is contained in the eigenspace corresponding to the product of their eigenvalues. It follows that
, and .
Thus is a Lie subalgebra, while any subalgebra of is commutative.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
La théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra g0 is called a real form of a complex Lie algebra g if g is the complexification of g0: The notion of a real form can also be defined for complex Lie groups. Real forms of complex semisimple Lie groups and Lie algebras have been completely classified by Élie Cartan. Using the Lie correspondence between Lie groups and Lie algebras, the notion of a real form can be defined for Lie groups.
Explore les symétries de jauge dans la théorie quantique des champs, en mettant l'accent sur l'invariance sous les transformations et le rôle des champs fantômes.
We consider a natural subclass of harmonic maps from a surface into G/T, namely cyclic primitive maps. Here G is any simple real Lie group (not necessarily compact), T is a Cartan subgroup and both are chosen so that there is a Coxeter automorphism on G(C) ...