Semisimple Lie algebraIn mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra , if nonzero, the following conditions are equivalent: is semisimple; the Killing form, κ(x,y) = tr(ad(x)ad(y)), is non-degenerate; has no non-zero abelian ideals; has no non-zero solvable ideals; the radical (maximal solvable ideal) of is zero.
Cartan subalgebraIn mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising (if for all , then ). They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra over a field of characteristic . In a finite-dimensional semisimple Lie algebra over an algebraically closed field of characteristic zero (e.g., ), a Cartan subalgebra is the same thing as a maximal abelian subalgebra consisting of elements x such that the adjoint endomorphism is semisimple (i.
E8 (mathématiques)vignette|Le polytope de Gosset : les 240 vecteurs du système de racines En mathématiques, est le plus grand groupe de Lie complexe de type exceptionnel. Son algèbre de Lie est notée . E est de rang 8 et de dimension 248. Il est simplement connexe et son centre est trivial. La structure E a été découverte en 1887 par le mathématicien norvégien Sophus Lie pour étudier la symétrie et jusqu’ici personne ne pensait que cet objet mathématique pourrait être compris, considère , responsable de l’équipe qui réunit 18 mathématiciens et programmeurs dans le monde, dont Fokko du Cloux et .
Dynkin diagramIn the mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram (such as whether it contains multiple edges, or its symmetries) correspond to important features of the associated Lie algebra.
G2 (mathématiques)En mathématiques, G2 est le plus petit des groupes de Lie complexes de type exceptionnel. Son algèbre de Lie est notée . G2 est de rang 2 et de dimension 14. Sa forme compacte est simplement connexe, et sa forme déployée a un groupe fondamental d'ordre 2. Son groupe d'automorphismes est le groupe trivial. Sa représentation fondamentale est de dimension 7. La forme compacte de G2 peut être décrite comme le groupe d'automorphismes de l'algèbre octonionique. (1,−1,0),(−1,1,0) (1,0,−1),(−1,0,1) (0,1,−1),(0,−1,
Forme de KillingDans la théorie des algèbres de Lie, la forme de Killing est une forme bilinéaire symétrique naturellement associée à toute algèbre de Lie. Elle reflète un certain nombre de propriétés des algèbres de Lie (semi-simplicité, résolubilité...). Soit g une K-algèbre de Lie, où K désigne un corps (commutatif). La représentation adjointe définit pour tout vecteur x de g un endomorphisme K-linéaire ad(x) du K-espace vectoriel g : Si g est de dimension finie, il existe une forme bilinéaire symétrique B définie par : où Tr désigne l'opérateur trace.
Système de racinesEn mathématiques, un système de racines est une configuration de vecteurs dans un espace euclidien qui vérifie certaines conditions géométriques. Cette notion est très importante dans la théorie des groupes de Lie. Comme les groupes de Lie et les groupes algébriques sont maintenant utilisés dans la plupart des parties des mathématiques, la nature apparemment spéciale des systèmes de racines est en contradiction avec le nombre d'endroits dans lesquels ils sont appliqués.
Algèbre de LieEn mathématiques, une algèbre de Lie, nommée en l'honneur du mathématicien Sophus Lie, est un espace vectoriel qui est muni d'un crochet de Lie, c'est-à-dire d'une loi de composition interne bilinéaire, alternée, et qui vérifie la relation de Jacobi. Une algèbre de Lie est un cas particulier d'algèbre sur un corps. Soit K un corps commutatif. Une algèbre de Lie sur K est un espace vectoriel sur K muni d'une application bilinéaire de dans qui vérifie les propriétés suivantes : Le produit est appelé crochet de Lie (ou simplement crochet) de et .