Résumé
En mathématiques, un système de racines est une configuration de vecteurs dans un espace euclidien qui vérifie certaines conditions géométriques. Cette notion est très importante dans la théorie des groupes de Lie. Comme les groupes de Lie et les groupes algébriques sont maintenant utilisés dans la plupart des parties des mathématiques, la nature apparemment spéciale des systèmes de racines est en contradiction avec le nombre d'endroits dans lesquels ils sont appliqués. Par ailleurs, le schéma de classification des systèmes de racines, par les diagrammes de Dynkin, apparaît dans des parties des mathématiques sans aucune connexion manifeste avec les groupes de Lie (telle que la théorie des singularités). Soit V un espace euclidien de dimension finie, muni du produit scalaire euclidien standard noté (·, ·). Un système de racines dans V est un ensemble fini de vecteurs non nuls (appelés racines) qui satisfont les propriétés suivantes : thumb|La condition d'intégralité pour force β à être sur les lignes verticales. En les combinant aux conditions d'intégralité pour les possibilités pour les angles entre α et β sont encore réduites à au plus deux possibilités sur chaque ligne verticale. Les racines engendrent V comme espace vectoriel. Les seuls multiples scalaires d'une racine qui sont dans sont elle-même et son opposé . Pour chaque racine l'ensemble est stable par la réflexion à travers l'hyperplan perpendiculaire à i.e. pour toutes racines et on a, (condition d'intégralité) Si et sont des racines dans , alors la projection orthogonale de sur la ligne engendrée par est un multiple demi-entier de : En raison de la propriété 3, la condition d'intégralité est équivalente à l'énoncé suivant : et son image par la réflexion par rapport à diffèrent par un multiple entier de . Le rang d'un système de racines est la dimension de V. On peut combiner deux systèmes de racines en faisant la somme directe des espaces euclidiens sous-jacents et en prenant l'union des racines. Un système de racines qui ne peut pas être obtenu de cette manière est dit irréductible.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.