Transcendental extensionIn mathematics, a transcendental extension is a field extension such that there exists an element in the field that is transcendental over the field ; that is, an element that is not a root of any univariate polynomial with coefficients in . In other words, a transcendental extension is a field extension that is not algebraic. For example, are both transcendental extensions of A transcendence basis of a field extension (or a transcendence basis of over ) is a maximal algebraically independent subset of over Transcendence bases share many properties with bases of vector spaces.
Identité d'EulerEn mathématiques, l'identité d'Euler est une relation entre plusieurs constantes fondamentales et utilisant les trois opérations arithmétiques d'addition, multiplication et exponentiation : où la base e du logarithme naturel représente l'analyse, l'unité imaginaire i représente l'algèbre, la constante d'Archimède π représente la géométrie, . Elle est nommée d'après le mathématicien Leonhard Euler qui la fait apparaître dans son Introductio, publié à Lausanne en 1748.
Cantor's first set theory articleCantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably, rather than countably, infinite. This theorem is proved using Cantor's first uncountability proof, which differs from the more familiar proof using his diagonal argument.