In mathematics, a transcendental extension is a field extension such that there exists an element in the field that is transcendental over the field ; that is, an element that is not a root of any univariate polynomial with coefficients in . In other words, a transcendental extension is a field extension that is not algebraic. For example, are both transcendental extensions of
A transcendence basis of a field extension (or a transcendence basis of over ) is a maximal algebraically independent subset of over Transcendence bases share many properties with bases of vector spaces. In particular, all transcendence bases of a field extension have the same cardinality, called the transcendence degree of the extension. Thus, a field extension is a transcendental extension if and only if its transcendence degree is positive.
Transcendental extensions are widely used in algebraic geometry. For example, the dimension of an algebraic variety is the transcendence degree of its function field. Also, global function fields are transcendental extensions of degree one of a finite field, and play in number theory in positive characteristic a role that is very similar to the role of algebraic number fields in characteristic zero.
Zorn's lemma shows there exists a maximal linearly independent subset of a vector space (i.e., a basis). A similar argument with Zorn's lemma shows that, given a field extension L / K, there exists a maximal algebraically independent subset of L over K. It is then called a transcendence basis. By maximality, an algebraically independent subset S of L over K is a transcendence basis if and only if L is an algebraic extension of K(S), the field obtained by adjoining the elements of S to K.
The exchange lemma (a version for algebraically independent sets) implies that if S, S' are transcendence bases, then S and S' have the same cardinality. Then the common cardinality of transcendence bases is called the transcendence degree of L over K and is denoted as or .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
In algebraic geometry, the function field of an algebraic variety V consists of objects which are interpreted as rational functions on V. In classical algebraic geometry they are ratios of polynomials; in complex algebraic geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions. In complex algebraic geometry the objects of study are complex analytic varieties, on which we have a local notion of complex analysis, through which we may define meromorphic functions.
En mathématiques, et plus spécifiquement en algèbre, une extension L d'un corps K est dite séparable si elle est algébrique et si le polynôme minimal de tout élément de L n'admet que des racines simples (dans une clôture algébrique de K). La séparabilité est une des propriétés des extensions de Galois. Toute extension finie séparable satisfait le théorème de l'élément primitif. Les corps dont toutes les extensions algébriques sont séparables (c'est-à-dire les corps parfaits) sont nombreux.
Explore les fondamentaux de la théorie de Galois, y compris les éléments séparables, les champs de décomposition et les groupes de Galois, en soulignant l'importance des extensions de degrés finis et de la structure des extensions de Galois.
An integer program (IP) is a problem of the form min{f(x):Ax=b,l≤x≤u,x∈Zn}, where A∈Zm×n, b∈Zm, l,u∈Zn, and f:Zn→Z is a separable convex objective function.
The problem o ...
EPFL2020
,
In a seminal work, Micciancio & Voulgaris (2010) described a deterministic single-exponential time algorithm for the Closest Vector Problem (CVP) on lattices. It is based on the computation of the Voronoi cell of the given lattice and thus may need exponen ...
SPRINGER INTERNATIONAL PUBLISHING AG2018
,
In a seminal work, Micciancio and Voulgaris (SIAM J Comput 42(3):1364-1391, 2013) described a deterministic single-exponential time algorithm for the closest vector problem (CVP) on lattices. It is based on the computation of the Voronoi cell of the given ...