Explore l'apprentissage bio-inspiré avec des réseaux neuronaux et des algorithmes génétiques, couvrant la structure, la formation et les applications pratiques.
Couvre la cartographie de la susceptibilité aux feux de forêt à l'aide de la robotique ML-Al et de divers sujets connexes, y compris les protocoles expérimentaux, l'ingénierie des fonctions DFT, SimpedCLIP et la détection de Covid-19.
Explore les défis et les distinctions entre l'autonomie humaine et artificielle, en abordant les implications éthiques et les conditions requises pour une véritable autonomie.
Explore l'impact de l'apprentissage automatique dans la compréhension des maladies humaines, en mettant l'accent sur l'importance historique, la découverte de produits naturels et les défis dans les médicaments de conception.
Couvre les bases de l'apprentissage automatique pour les physiciens et les chimistes, en mettant l'accent sur la classification des images et l'étiquetage des ensembles de données.