Explore le modèle de Hopfield stochastique, les neurones bruyants, les probabilités de tir, la récupération de mémoire et les équations de chevauchement dans les réseaux d'attraction.
Explore l'apprentissage automatique dans les simulations de dynamique moléculaire, s'attaquant à la malédiction de la dimensionnalité, de la représentation du réseau neuronal et de l'estimation des champs de force.
Explore les réseaux neuraux pour la tomographie quantique de l'état, en se concentrant sur les systèmes hautement enchevêtrés, les programmes de formation et l'ajustement excessif.
Explore une approche de réseau neuronal à la tomographie d'état quantique utilisant RBM, présentant des prédictions précises et des applications potentielles au-delà de RBM.
Couvre les modèles générateurs en mettant l'accent sur l'auto-attention et les transformateurs, en discutant des méthodes d'échantillonnage et des moyens empiriques.
Explique le regroupement des moyennes k, en attribuant des points de données à des grappes en fonction de la proximité et en minimisant les distances carrées à l'intérieur des grappes.