In geometry, the minimum or smallest bounding or enclosing box for a point set S in N dimensions is the box with the smallest measure (area, volume, or hypervolume in higher dimensions) within which all the points lie. When other kinds of measure are used, the minimum box is usually called accordingly, e.g., "minimum-perimeter bounding box". The minimum bounding box of a point set is the same as the minimum bounding box of its convex hull, a fact which may be used heuristically to speed up computation. The terms "box" and "hyperrectangle" come from their usage in the Cartesian coordinate system, where they are indeed visualized as a rectangle (two-dimensional case), rectangular parallelepiped (three-dimensional case), etc. In the two-dimensional case it is called the minimum bounding rectangle. The axis-aligned minimum bounding box (or AABB) for a given point set is its minimum bounding box subject to the constraint that the edges of the box are parallel to the (Cartesian) coordinate axes. It is the Cartesian product of N intervals each of which is defined by the minimal and maximal value of the corresponding coordinate for the points in S. Axis-aligned minimal bounding boxes are used to an approximate location of an object in question and as a very simple descriptor of its shape. For example, in computational geometry and its applications when it is required to find intersections in the set of objects, the initial check is the intersections between their MBBs. Since it is usually a much less expensive operation than the check of the actual intersection (because it only requires comparisons of coordinates), it allows quickly excluding checks of the pairs that are far apart. The arbitrarily oriented minimum bounding box is the minimum bounding box, calculated subject to no constraints as to the orientation of the result. Minimum bounding box algorithms based on the rotating calipers method can be used to find the minimum-area or minimum-perimeter bounding box of a two-dimensional convex polygon in linear time, and of a three-dimensional point set in the time it takes to construct its convex hull followed by a linear-time computation.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (20)
Optimisation : problèmes de volume
Explore les problèmes de volume contraint en utilisant les multiplicateurs de Lagrange pour trouver des extrema sous contraintes dans divers exemples.
Approximation diophantienne : le théorème de Minbowski
Couvre le théorème de Minbowski sur l'approximation diophantienne et l'orthogonalisation de Gram-Schmidt.
Compression vidéo : Normes et techniques
Explore l'évolution des normes et techniques de compression vidéo, de H.261 à VVC, en mettant l'accent sur les progrès dans l'efficacité de compression et la qualité vidéo.
Afficher plus
Publications associées (29)

Social-Transmotion: Promptable Human Trajectory Prediction

Alexandre Massoud Alahi, Yang Gao, Kaouther Messaoud Ben Amor, Saeed Saadatnejad

Accurate human trajectory prediction is crucial for applications such as autonomous vehicles, robotics, and surveillance systems. Yet, existing models often fail to fully leverage the non-verbal social cues human subconsciously communicate when navigating ...
2024

Quantum Protocols for ML, Physics, and Finance

Grzegorz Adam Gluch

In this thesis, we give new protocols that offer a quantum advantage for problems in ML, Physics, and Finance.Quantum mechanics gives predictions that are inconsistent with local realism.The experiment proving this fact (Bell, 1964) gives a quantum protoco ...
EPFL2024

Rigidity-Aware Detection for 6D Object Pose Estimation

Mathieu Salzmann, Yinlin Hu, Jingyu Li, Rui Song

Most recent 6D object pose estimation methods first use object detection to obtain 2D bounding boxes before actually regressing the pose. However, the general object detection methods they use are ill-suited to handle cluttered scenes, thus producing poor ...
Los Alamitos2023
Afficher plus
Concepts associés (2)
Volume englobant
Dans les domaines de la synthèse d'image et de la géométrie algorithmique, un volume englobant pour un ensemble d'objets est un volume fermé qui contient entièrement l'union de l'ensemble des objets. Les volumes englobants sont utilisés pour améliorer l'efficacité des opérations géométriques en utilisant des volumes simples, qui contiennent des objets beaucoup plus complexes. Normalement, plus un volume est simple plus le test de chevauchement est simple. Les volumes englobants sont le plus souvent utilisés pour accélérer certains types de tests.
Géométrie algorithmique
vignette|Rendu d'un cylindre à l'aide d'un programme d'ordinateur. La géométrie algorithmique est le domaine de l'algorithmique qui traite des algorithmes manipulant des concepts géométriques. La géométrie algorithmique est l'étude des algorithmes manipulant des objets géométriques. Par exemple, le problème algorithmique qui consiste, étant donné un ensemble de points dans le plan décrits par leurs coordonnées, à trouver la paire de points dont la distance est minimale est un problème d'algorithmique géométrique.
MOOCs associés (8)
Initiation à la Programmation en C++ [retired]
Le cours suivi propose une initiation aux concepts de base de la programmation impérative tels que : variables, expressions, structures de contrôle, fonctions/méthodes, en les illustrant dans la synta
Introduction à la Programmation Orientée Objet (en C++) [retired]
Le cours suivi propose une introduction aux concepts de base de la programmation orientée objet tels que : encapsulation et abstraction, classes/objets, attributs/méthodes, héritage, polymorphisme, ..
Initiation à la Programmation en C++
Ce cours initie à la programmation en utilisant le langage C++. Il ne présuppose pas de connaissance préalable. Les aspects plus avancés (programmation orientée objet) sont donnés dans un cours suivan
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.