Théorie de l'homotopieLa théorie de l'homotopie est une branche des mathématiques issue de la topologie algébrique dans laquelle les espaces et applications sont considérés à homotopie près. La notion topologique de déformation est étendue à des contextes algébriques notamment via les structures de complexe différentiel puis d’algèbre A. Étant donné deux équivalences d’homotopie f : X′ → X et g : Y → Y′, l’ensemble des classes d'homotopie des applications continues entre X et Y s’identifie à celui des applications entre X′ et Y′ par composition avec f et g.
Cône (topologie)En topologie, et en particulier en topologie algébrique, le cône CX d'un espace topologique X est l'espace quotient :du produit de X par l'intervalle unité I = [0, 1]. Intuitivement, on forme un cylindre de base X et on réduit une extrémité du cylindre à un point. Le cône construit sur un point p de la droite réelle est le segment {p} × [0,1]. Le cône construit sur deux points {0,1} est un "V" avec les extrémités en 0 et 1. Le cône construit sur un intervalle I de la droite réelle est un triangle plein, aussi appelé 2-simplexe (voir l'exemple final).
Espace des lacetsEn mathématiques, l'espace des lacets d'un espace topologique pointé est l'ensemble des applications continues d'un segment dans cet espace, tel que l'image des deux extrémités du segment coïncide avec le point de base. Muni de la topologie compacte-ouverte, il s'agit d'un invariant homotopique. La concaténation et le renversement des lacets en font un h-groupe. L'espace des lacets d'un CW-complexe a le type d'homotopie d'un CW-complexe. L’espace des lacets est la cofibre de l’inclusion de l’espace des chemins pointés dans l’espace des chemins.
Espace pointéEn topologie, un espace pointé est un espace topologique dont on spécifie un point particulier comme étant le point de base. Formellement, il s'agit donc d'un couple (E, x) pour lequel x est un élément de E. Une application pointée entre deux espaces pointés est une application continue préservant les points de base. Les espaces pointés sont les objets d'une catégorie, notée parfois Top, dont les morphismes sont les applications pointées. Cette catégorie admet le point comme objet nul.
Théorème de suspension de FreudenthalLe théorème de suspension de Freudenthal est un théorème de mathématiques démontré en 1937 par Hans Freudenthal. C'est un résultat fondamental sur l'homotopie, qui explique le comportement des groupes d'homotopie d'un espace pointé lorsqu'on en prend la suspension et qui conduit à la théorie de l'homotopie stable. Soit X un CW-complexe pointé n-connexe. L'application X → Ω(X ∧ S), où Ω désigne le foncteur espace des lacets et ∧ le smash-produit, induit un morphisme de groupesπ(X) → π(Ω(X ∧ S)) ≃ π(X ∧ S).
Théorie de l'homotopie stableEn mathématiques, la théorie de l'homotopie stable est une partie de la théorie de l'homotopie concernée par les structures et tous les phénomènes qui subsistent après suffisamment d'applications du foncteur de suspension. Un résultat fondateur a été le théorème de suspension de Freudenthal, qui stipule que, étant donné tout espace pointé , les groupes d'homotopie se stabilisent pour suffisamment grand. En particulier, les groupes d'homotopie des sphères se stabilisent pour .
Homotopy categoryIn mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.
FibrationEn théorie de l'homotopie, une fibration est une application continue entre espaces topologiques satisfaisant une propriété de relèvement des homotopies, qui est satisfaite en général par les projections fibrées. Les fibrations de Serre relèvent les homotopies depuis les CW-complexes tandis que les fibrations de Hurewicz relèvent les homotopies depuis n'importe quel espace topologique.
Suite de PuppeLa suite de Puppe — nommée d'après Dieter Puppe — est une construction mathématique en topologie algébrique, plus précisément en théorie de l'homotopie. Soient f : A → B une application continue entre deux CW-complexes et C(f) son cône. On a donc une suite : A → B → C(f). En appliquant à f le foncteur de suspension et en effectuant pour Sf : SA → SB la même construction, on obtient une autre suite : SA → SB → C(Sf).
Groupe d'homotopieEn mathématiques, et plus particulièrement en topologie algébrique, les groupes d'homotopie sont des invariants qui généralisent la notion de groupe fondamental aux dimensions supérieures. Il y a plusieurs définitions équivalentes possibles. Première définition Soit X un espace topologique et un point de X. Soit la boule unité de dimension i de l'espace euclidien . Son bord est la sphère unité de dimension . Le i-ième groupe d'homotopie supérieur est l'ensemble des classes d'homotopie relative à d'applications continues telle que : .