Concept

Addition matricielle

Résumé
vignette|Illustration d'une addition matricielle L'addition matricielle est une opération mathématique qui consiste à produire une matrice qui est le résultat de l'addition de deux matrices de même type. Processus d'addition L'addition des matrices est définie pour deux matrices de même type. La somme de deux matrices de type (m, n), A=(a_{ij}) et B=(b_{ij}), notée A + B, est à nouveau une matrice (c_{ij}) de type (m, n) obtenue en additionnant les éléments correspondants, i.e., :pour tous i, j, c_{ij}=a_{ij}+b_{ij}~

Par exemple: : \begin{pmatrix} 1 & 3 \ 1 & 0 \ 1 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \ 7 & 5 \ 2 & 1 \end{pmatrix}

\begin{pmatrix} 1+0 & 3+0 \ 1+7 & 0+5 \ 1+2 & 2+1 \end{pmatrix}

\begin{pmatrix} 1 & 3 \ 8 & 5 \ 3 & 3 \end{pmatrix} L'ensemble des matrices de type (m, n) avec la loi d'addition forment un groupe ab
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement