Nombre irrationnelUn nombre irrationnel est un nombre réel qui n'est pas rationnel, c'est-à-dire qu'il ne peut pas s'écrire sous la forme d'une fraction a/b, où a et b sont deux entiers relatifs (avec b non nul). Les nombres irrationnels peuvent être caractérisés de manière équivalente comme étant les nombres réels dont le développement décimal n'est pas périodique ou dont le développement en fraction continue est infini. On distingue, parmi les nombres irrationnels, deux sous-ensembles complémentaires : les nombres algébriques non rationnels et les nombres transcendants.
Extraction de racine carréeEn algorithmique et en analyse numérique, l'extraction de racine carrée est le processus qui consiste, étant donné un nombre, à en calculer la racine carrée. Il existe de nombreuses méthodes pour effectuer ce calcul. C'est un cas particulier de la recherche de calcul de la racine n-ième. La racine carrée d'un nombre pouvant être un nombre irrationnel, l'extraction de racine carrée est en général approchée. L'extraction de la racine carrée d'un nombre a est identique à la résolution de l'équation x - a = 0.
Racine carrée de troisLa racine carrée de trois, notée ou 3, est, en mathématiques, le nombre réel positif dont le carré est 3 exactement. Elle vaut approximativement et une bonne approximation fractionnaire en est 97/56 (à 10 près). On l’appelle parfois constante de Théodore ,Théodore de Cyrène ayant démontré son irrationalité. le nombre 3 ayant deux racines carrées réelles, devrait se prononcer racine carrée positive de 3, mais on le prononce simplement racine carrée de 3, voire racine de 3 pour simplifier.
Équation de Pell-Fermatthumb|Pierre de Fermat (1601-1665) affirme que l'équation de Pell-Fermat possède toujours une infinité de solutions si m = ±1, sans savoir que Bhāskara II (1114-1185) avait fait de même. En mathématiques et plus précisément en arithmétique, l'équation de Pell-Fermat est une équation diophantienne polynomiale quadratique. Si n est un entier positif qui n'est pas un carré parfait et m un entier non nul, l'équation prend la forme suivante : Les solutions recherchées sont les solutions telles que x et y soient des valeurs entières.