The topic of heteroskedasticity-consistent (HC) standard errors arises in statistics and econometrics in the context of linear regression and time series analysis. These are also known as heteroskedasticity-robust standard errors (or simply robust standard errors), Eicker–Huber–White standard errors (also Huber–White standard errors or White standard errors), to recognize the contributions of Friedhelm Eicker, Peter J. Huber, and Halbert White.
In regression and time-series modelling, basic forms of models make use of the assumption that the errors or disturbances ui have the same variance across all observation points. When this is not the case, the errors are said to be heteroskedastic, or to have heteroskedasticity, and this behaviour will be reflected in the residuals estimated from a fitted model. Heteroskedasticity-consistent standard errors are used to allow the fitting of a model that does contain heteroskedastic residuals. The first such approach was proposed by Huber (1967), and further improved procedures have been produced since for cross-sectional data, time-series data and GARCH estimation.
Heteroskedasticity-consistent standard errors that differ from classical standard errors may indicate model misspecification. Substituting heteroskedasticity-consistent standard errors does not resolve this misspecification, which may lead to bias in the coefficients. In most situations, the problem should be found and fixed. Other types of standard error adjustments, such as clustered standard errors or HAC standard errors, may be considered as extensions to HC standard errors.
Heteroskedasticity-consistent standard errors are introduced by Friedhelm Eicker, and popularized in econometrics by Halbert White.
Consider the linear regression model for the scalar .
where is a k x 1 column vector of explanatory variables (features), is a k × 1 column vector of parameters to be estimated, and is the residual error.
The ordinary least squares (OLS) estimator is
where is a vector of observations , and denotes the matrix of stacked values observed in the data.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
En statistique, l'on parle d'hétéroscédasticité lorsque les variances des résidus des variables examinées sont différentes. Le mot provient du grec, composé du préfixe hétéro- (« autre »), et de skedasê (« dissipation»). Une collection de variables aléatoires est hétéroscédastique s'il y a des sous-populations qui ont des variabilités différentes des autres. La notion d'hétéroscédasticité s'oppose à celle d'homoscédasticité. Dans le second cas, la variance de l'erreur des variables est constante i.e. .
In statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model when there is a certain degree of correlation between the residuals in the regression model. Least squares and weighted least squares may need to be more statistically efficient and prevent misleading inferences. GLS was first described by Alexander Aitken in 1935. In standard linear regression models one observes data on n statistical units.
Explore l'hétéroscédasticité et l'autocorrélation en économétrie, couvrant les implications, les applications, les méthodes de test et les conséquences des tests d'hypothèses.
Explore l'hétéroskédasticité en économétrie, en discutant de son impact sur les erreurs standard, les estimateurs alternatifs, les méthodes d'essai et les implications pour les tests d'hypothèses.
Couvre les fondamentaux de la chimie quantique, y compris la théorie des liaisons de valence et les orbitales moléculaires.
The course covers basic econometric models and methods that are routinely applied to obtain inference results in economic and financial applications.
Ce cours présentera les bases de l'analyse des données et de l'apprentissage à partir des données, l'estimation des erreurs et la stochasticité en physique. Les concepts seront introduits théoriquemen
Les étudiants traitent des observations entachées d'incertitude de manière rigoureuse. Ils maîtrisent les principales méthodes de compensation des mesures et d'estimation des paramètres. Ils appliquen
Summary Background Malnutrition and food insecurity might be driven not only by individual factors but also by contextual conditions, such as area-level deprivation or vulnerability. This study aimed to analyze the association between area-level vulnerabil ...
2023
, , ,
Tightly-coupled sensor orientation, i.e. the simultaneous processing of temporal (GNSS and raw inertial) and spatial (image and lidar) constraints in a common adjustment, has demonstrated significant improvement in the quality of attitude determination wit ...
2024
,
Battery health prediction is significant while challenging for intelligent battery management. This article proposes a general framework for both short-term and long-term predictions of battery health under unseen dynamic loading and temperature conditions ...