Concept

Site (mathématiques)

Résumé
En théorie des catégories, une branche des mathématiques, une topologie de Grothendieck est une structure sur une catégorie permettant de voir certains objets de comme les ensembles ouverts d'un espace topologique. Une catégorie munie d'une topologie de Grothendieck est appelée un site. Une topologie de Grothendieck axiomatise la notion de recouvrement d'un espace topologique par des ouverts. Cela permet de généraliser la définition de faisceaux, et leur cohomologie, à un site quelconque. Historiquement, la notion fut dégagée par Alexandre Grothendieck pour définir la cohomologie étale des schémas, à l'aide du site étale. Elle a ensuite été utilisée pour définir d'autres théories cohomologiques, telles que la , la et la cohomologie cristalline. Les topologies de Grothendieck servent aussi à définir les de John Tate. La catégorie des faisceaux (d'ensembles) sur un site donne lieu à un topos de Grothendieck. Plusieurs sites différents peuvent définir des topos isomorphes. Un site est la donnée d'une (petite) catégorie et d'un ensemble de recouvrements. Un élément de est défini par un ensemble , un objet de et pour tout , un objet de et un morphisme . On suppose par ailleurs que: Si est un isomorphisme alors (« les isomorphismes sont des recouvrements »); si et pour tout on a , alors (« les composés de recouvrements sont des recouvrements »); si et est un morphisme de alors le produit fibré existe pour tout et . Pour le dernier axiome, rappelons que si et sont deux ouverts d'un espace topologique , alors leur produit fibré s'identifie à l'intersection . On peut alors lier cet axiome au fait que si est un recouvrement par des ouverts de , alors est un recouvrement par des ouverts de . Soit un espace topologique. On note la catégorie dont les objets sont les ouverts de , et où l'on a un (et un seul) morphisme si et seulement si . On définit les recouvrements de comme les recouvrements habituels, c'est-à-dire les familles d'ouverts telles que . On pourrait aussi se restreindre à certains recouvrements particuliers.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.