Résumé
En géométrie, un rectangle est un quadrilatère dont les quatre angles sont droits. Un quadrilatère est un polygone (donc une figure plane) constitué de quatre points (appelés sommets) et de quatre segments (ou côtés) liant ces sommets deux à deux de manière à délimiter un contour fermé. Fichier:Six Quadrilaterals.svg|Quadrilatères. Les deux situés en haut à gauche (vert et marron) sont des rectangles. Fichier:Rectangle 2.svg|Un rectangle, ses deux diagonales et un [[angle droit]] codé. vignette|droite|Un quadrilatère avec trois angles droits. Différentes propriétés caractéristiques permettent d'affirmer qu'un quadrilatère est un rectangle. Il suffit qu'un quadrilatère possède trois angles droits pour être un rectangle. Tout quadrilatère équiangle (c'est-à-dire dont les quatre angles sont égaux) est un rectangle. Si un quadrilatère est un parallélogramme, alors il est un rectangle si l'une des propriétés suivantes est vérifiée : il possède deux côtés consécutifs perpendiculaires (autrement dit : il possède un angle droit) ; ses deux diagonales ont la même longueur. Un rectangle est un cas particulier de parallélogramme, donc : ses côtés opposés sont parallèles et de même longueur ; ses deux diagonales se coupent en leur milieu ; ce milieu est un centre de symétrie du rectangle. Il possède des propriétés supplémentaires : ses diagonales sont de même longueur ; il possède deux axes de symétrie, qui sont les médiatrices de ses côtés ; les diagonales étant de même longueur et sécantes en leur milieu O, les quatre sommets du rectangle sont équidistants de O, ce qui signifie qu'il existe un cercle de centre O passant par ces quatre sommets, appelé cercle circonscrit au rectangle, qui est lui-même dit inscrit dans ce cercle. Tout rectangle peut servir à constituer un pavage du plan. Cela signifie qu'il est possible, avec des rectangles identiques, de recouvrir tout le plan sans superposer deux rectangles. Des droites perpendiculaires partagent le plan en zones rectangulaires. File:Pattern brick 32.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.