Couvre la détection et la correction des erreurs de paramètres dans les réseaux électriques, en mettant l'accent sur les propriétés statistiques, l'identification des erreurs, l'efficacité de calcul, l'analyse de sensibilité et l'estimation robuste de l'état.
Explore l'estimation de la variance, la création d'estimateurs personnels, la correction du biais et la compréhension de l'erreur carrée moyenne dans l'analyse statistique.
S'insère dans le compromis entre la flexibilité du modèle et la variation des biais dans la décomposition des erreurs, la régression polynomiale, le KNN, et la malédiction de la dimensionnalité.
Explore les méthodes de Préférences Étatées (SP), les modèles de choix et la conception expérimentale pour prédire le comportement individuel et la demande du marché.
Explore les fonctions de perte, la descente de gradient et l'impact de la taille des pas sur l'optimisation dans les modèles d'apprentissage automatique, en soulignant l'équilibre délicat requis pour une convergence efficace.