Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la régression logistique pour les variables de réponse binaire, couvrant des sujets tels que l'interprétation du rapport de cotes et l'ajustement du modèle.
Explore les tests de bonté d'ajustement, les tests X2 et les tests d'indépendance dans les statistiques, avec des exemples pratiques et des applications.
Se penche sur les techniques avancées de prétraitement des données, qui couvrent l'encodage catégorique, le traitement des données manquantes et les ensembles de données déséquilibrés, en mettant l'accent sur les mesures des performances et la comparaison des classificateurs.
Couvre la régression linéaire, lanalyse de corrélation et les fondamentaux de régression logistique, en mettant laccent sur la distinction entre la corrélation et la causalité.
Explore l'analyse de régression logistique des données sur le crabe en fer à cheval, en se concentrant sur l'interprétation du rapport de cotes et l'ajustement du modèle.
Explore l'interprétation des réponses binaires, les fonctions de liaison, la régression logistique et la sélection des modèles à l'aide de déviances et de critères d'information.
Explore les modèles de choix binaires comme probit et logit, ainsi que l'analyse de séries temporelles univariées avec les modèles ARIMA pour la prévision des variables économiques.