Catégorie dérivéeLa catégorie dérivée d'une catégorie est une construction, originellement introduite par Jean-Louis Verdier dans sa thèse et reprise dans SGA 41⁄2, qui permet notamment de raffiner et simplifier la théorie des foncteurs dérivés. Elle a amené à plusieurs développements importants, ainsi que des reformulations élégantes par exemple de la théorie des D-modules et des preuves de la qui généralise le vingt-et-unième problème de Hilbert. En particulier, le langage des catégories dérivées permet de simplifier des problèmes exprimés en termes de suites spectrales.
Lemme des cinqEn algèbre homologique, le lemme des cinq permet d'établir l'injectivité et la surjectivité des flèches dans les diagrammes commutatifs. Précisément : en supposant 1) que le diagramme ci-dessous est commutatif 2) que les deux lignes du diagramme sont exactes 3) que et sont des isomorphismes 4) que est un épimorphisme et un monomorphisme alors est un isomorphisme. Ceci vaut non seulement dans une catégorie abélienne (comme celle des groupes abéliens, ou celle des espaces vectoriels sur un corps fixé) mais aussi, par exemple, dans la catégorie des groupes.
Module projectifEn mathématiques, un module projectif est un module P (à gauche par exemple) sur un anneau A tel que pour tout morphisme surjectif f : N → M entre deux A-modules (à gauche) et pour tout morphisme g : P → M, il existe un morphisme h : P → N tel que g = fh, c'est-à-dire tel que le diagramme suivant commute : center Autrement dit : P est projectif si pour tout module N, tout morphisme de P vers un quotient de N se factorise par N.
Short five lemmaIn mathematics, especially homological algebra and other applications of theory, the short five lemma is a special case of the five lemma. It states that for the following commutative diagram (in any abelian , or in the ), if the rows are short exact sequences, and if g and h are isomorphisms, then f is an isomorphism as well. It follows immediately from the five lemma.
Complexe différentielEn mathématiques, un complexe différentiel est un groupe abélien (voire un module), ou plus généralement un objet d'une catégorie abélienne, muni d'un endomorphisme de carré nul (appelé différentielle ou bord), c'est-à-dire dont l' est contenue dans le noyau. Cette condition permet de définir son homologie, qui constitue un invariant essentiel en topologie algébrique. Un complexe différentiel peut être gradué pour constituer un complexe de chaines ou de cochaines).
Cohomologie des faisceauxLes groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines. Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines : où est une résolution injective du faisceau , et désigne le groupe abélien des sections globales de . A unique isomorphisme canonique près, ces groupes ne dépendent pas de la résolution injective choisie. Le zéroième groupe est canoniquement isomorphe à .
Suite exacteEn mathématiques, plus particulièrement en algèbre homologique, une suite exacte est une suite (finie ou infinie) d'objets et de morphismes entre ces objets telle que l' de l'un est égale au noyau du suivant. Dans le contexte de la théorie des groupes, on dit que la suite (finie ou infinie) de groupes et de morphismes de groupes est exacte si pour tout entier naturel n on a . Dans ce qui précède, sont des groupes et des morphismes de groupes avec . Dans la suite, 0 dénote le groupe trivial, qui est l'objet nul dans la catégorie des groupes.
Groupe abélien libreEn mathématiques, un groupe abélien libre est un groupe abélien qui possède une base, c'est-à-dire une partie B telle que tout élément du groupe s'écrive de façon unique comme combinaison linéaire à coefficients entiers (relatifs) d'éléments de B. Comme les espaces vectoriels, les groupes abéliens libres sont classifiés (à isomorphisme près) par leur rang, défini comme le cardinal d'une base, et tout sous-groupe d'un groupe abélien libre est lui-même abélien libre.
Module homomorphismIn algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R, In other words, f is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If M, N are right R-modules, then the second condition is replaced with The of the zero element under f is called the kernel of f.
Topologie algébriqueLa topologie algébrique, anciennement appelée topologie combinatoire, est la branche des mathématiques appliquant les outils de l'algèbre dans l'étude des espaces topologiques. Plus exactement, elle cherche à associer de manière naturelle des invariants algébriques aux structures topologiques associées. La naturalité signifie que ces invariants vérifient des propriétés de fonctorialité au sens de la théorie des catégories. L'idée fondamentale est de pouvoir associer à tout espace topologique des objets algébriques (nombre, groupe, espace vectoriel, etc.