Explore la prédiction linéaire, les filtres optimaux, les signaux aléatoires, la stationnarité, l'autocorrélation, la densité spectrale de puissance et la transformée de Fourier dans le traitement du signal.
Couvre la transformée de Fourier inverse, le filtrage de fréquence, la segmentation, le seuillage, l'estimation de la taille des particules et l'analyse à l'aide d'ImageJ.
Explore les techniques de réduction de la variance telles que les variables antithétiques et l'échantillonnage d'importance dans l'estimation de Monte Carlo.
Couvre le filtrage adaptatif à l'aide de l'algorithme LMS pour les scénarios d'enregistrement immobile, en mettant l'accent sur la mise en œuvre pratique dans MATLAB.
Explore les techniques de filtrage d'images, y compris les filtres linéaires et non linéaires, pour l'élimination des artefacts et l'amélioration des fonctionnalités.