Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des statistiques descriptives, des tests d'hypothèses, des valeurs p et des intervalles de confiance, soulignant leur importance dans l'analyse des données.
Introduit des algorithmes ML non linéaires, couvrant le voisin le plus proche, k-NN, ajustement des courbes polynômes, complexité du modèle, surajustement, et régularisation.
Couvre les principes fondamentaux de la théorie de la détection et de l'estimation, en se concentrant sur l'erreur moyenne au carré et le test d'hypothèses.
Explore les tests statistiques pour l'indépendance et l'homogénéité, y compris les tests chi-carré et le test exact de Fisher, avec des exemples pratiques et des applications.