In mathematics, specifically ring theory, a principal ideal is an ideal in a ring that is generated by a single element of through multiplication by every element of The term also has another, similar meaning in order theory, where it refers to an (order) ideal in a poset generated by a single element which is to say the set of all elements less than or equal to in
The remainder of this article addresses the ring-theoretic concept.
a left principal ideal of is a subset of given by for some element
a right principal ideal of is a subset of given by for some element
a two-sided principal ideal of is a subset of given by for some element namely, the set of all finite sums of elements of the form
While this definition for two-sided principal ideal may seem more complicated than the others, it is necessary to ensure that the ideal remains closed under addition.
If is a commutative ring with identity, then the above three notions are all the same.
In that case, it is common to write the ideal generated by as or
Not all ideals are principal.
For example, consider the commutative ring of all polynomials in two variables and with complex coefficients. The ideal generated by and which consists of all the polynomials in that have zero for the constant term, is not principal. To see this, suppose that were a generator for Then and would both be divisible by which is impossible unless is a nonzero constant.
But zero is the only constant in so we have a contradiction.
In the ring the numbers where is even form a non-principal ideal. This ideal forms a regular hexagonal lattice in the complex plane. Consider and These numbers are elements of this ideal with the same norm (two), but because the only units in the ring are and they are not associates.
A ring in which every ideal is principal is called principal, or a principal ideal ring. A principal ideal domain (PID) is an integral domain in which every ideal is principal. Any PID is a unique factorization domain; the normal proof of unique factorization in the integers (the so-called fundamental theorem of arithmetic) holds in any PID.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
Introduction to the assembly of materials by homogeneous or heterogeneous joints (welding, bonding, mechanical assembly). Mechanical and environmental resistance of joints.
thumb|Richard Dedekind définit et établit les bases de la théorie des anneaux portant maintenant son nom. En mathématiques, un anneau de Dedekind est un anneau commutatif disposant de propriétés particulières (voir aussi anneau de Dedekind non commutatif). Sa formalisation initiale a pour objectif la description d'un ensemble d'entiers algébriques, ce concept est aussi utilisé en géométrie algébrique. Les anneaux de Dedekind doivent leur origine à la théorie algébrique des nombres.
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
In mathematics, specifically in abstract algebra, a prime element of a commutative ring is an object satisfying certain properties similar to the prime numbers in the integers and to irreducible polynomials. Care should be taken to distinguish prime elements from irreducible elements, a concept which is the same in UFDs but not the same in general. An element p of a commutative ring R is said to be prime if it is not the zero element or a unit and whenever p divides ab for some a and b in R, then p divides a or p divides b.
It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
San Diego2023
Dimension is a fundamental property of objects and the space in which they are embedded. Yet ideal notions of dimension, as in Euclidean spaces, do not always translate to physical spaces, which can be constrained by boundaries and distorted by inhomogenei ...
NATURE PORTFOLIO2022
Nanomaterials and nanoparticles are nowadays used in a wide range of applications; from sunscreens, paint and food industry to catalytic processes, lighting, TV's and displays, their presence is percolating in our daily life. New applications rise every da ...