Concept

Anneau de Dedekind

Résumé
thumb|Richard Dedekind définit et établit les bases de la théorie des anneaux portant maintenant son nom. En mathématiques, un anneau de Dedekind est un anneau commutatif disposant de propriétés particulières (voir aussi anneau de Dedekind non commutatif). Sa formalisation initiale a pour objectif la description d'un ensemble d'entiers algébriques, ce concept est aussi utilisé en géométrie algébrique. Les anneaux de Dedekind doivent leur origine à la théorie algébrique des nombres. Pour résoudre des équations comme celle du dernier théorème de Fermat, même pour de petits exposants, l'anneau des entiers relatifs s'avère malcommode. Il est parfois plus simple de considérer d'autres anneaux, comme celui des entiers de Gauss, d'Eisenstein ou l'anneau des entiers de ℚ(). Le théorème des deux carrés de Fermat ou encore l'équation de Pell-Fermat illustrent l'utilité d'une telle structure. Leurs études se fondent sur le cas particulier des entiers quadratiques, plus simple que le cas général.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement