Espace T1En mathématiques, un espace accessible (ou espace T, ou de Fréchet) est un cas particulier d'espace topologique. Il s'agit d'un exemple d'axiome de séparation. Un espace topologique E est T si pour tout couple (x, y) d'éléments de E distincts, il existe un ouvert contenant x et pas y. Soit E un espace topologique.
Axiomatic foundations of topological spacesIn the mathematical field of topology, a topological space is usually defined by declaring its open sets. However, this is not necessary, as there are many equivalent axiomatic foundations, each leading to exactly the same concept. For instance, a topological space determines a class of closed sets, of closure and interior operators, and of convergence of various types of objects. Each of these can instead be taken as the primary class of objects, with all of the others (including the class of open sets) directly determined from that new starting point.
Filters in topologyFilters in topology, a subfield of mathematics, can be used to study topological spaces and define all basic topological notions such as convergence, continuity, compactness, and more. Filters, which are special families of subsets of some given set, also provide a common framework for defining various types of limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called have many useful technical properties and they may often be used in place of arbitrary filters.
Axiome de séparation (topologie)En topologie, un axiome de séparation est une propriété satisfaite par certains espaces topologiques, similaire à la propriété de séparation de Hausdorff (dite aussi T2), et concernant la séparation de points ou de fermés, du point de vue soit de voisinages, soit de fonctions continues réelles. Divers axiomes de séparation peuvent être ordonnés par implication, notamment ceux de la série des axiomes codés par la lettre « T » et un indice numérique, ces axiomes étant en général d'autant plus restrictifs que les indices sont élevés et les topologies correspondantes plus fines.
Espace de KolmogorovEn topologie et dans d'autres branches des mathématiques, un espace de Kolmogorov (ou espace T0) est un espace topologique dans lequel tous les points peuvent être « distingués du point de vue topologique ». De tous les axiomes de séparation qui peuvent être demandés à un espace topologique, cette condition est la plus faible. Les espaces de Kolmogorov doivent leur nom au mathématicien russe Andreï Kolmogorov. Un espace topologique X est dit de Kolmogorov si pour tout couple d'éléments distincts x et y de X, il existe un voisinage de x qui ne contient pas y ou un voisinage de y qui ne contient pas x.
Topologie initialeEn mathématiques, plus précisément en topologie, la topologie initiale, sur un ensemble muni d'une famille d'applications à valeurs dans des espaces topologiques, est la topologie la moins fine pour laquelle toutes ces applications sont continues. Deux cas particuliers importants de topologies initiales sont la topologie induite et la topologie produit. La notion duale est celle de topologie finale. Soient X un ensemble et (fi)i∈I une famille d'applications, chacune définie sur X et à valeurs dans un espace topologique Yi.
Topologie de SierpińskiIn mathematics, the Sierpiński space (or the connected two-point set) is a finite topological space with two points, only one of which is closed. It is the smallest example of a topological space which is neither trivial nor discrete. It is named after Wacław Sierpiński. The Sierpiński space has important relations to the theory of computation and semantics, because it is the classifying space for open sets in the Scott topology.
Topologie cofinieLa topologie cofinie est la topologie que l'on peut définir sur tout ensemble X de la manière suivante : l'ensemble des ouverts est constitué de l'ensemble vide et parties de X cofinies, c'est-à-dire dont le complémentaire dans X est fini. Formellement, si l'on note τ la topologie cofinie sur X, on a : ou plus simplement, en définissant la topologie via les fermés : les fermés de X sont X et ses parties finies. La topologie induite sur une partie Y de X est la topologie cofinie sur Y.
Specialization (pre)orderIn the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the T0 separation axiom, this preorder is even a partial order (called the specialization order). On the other hand, for T1 spaces the order becomes trivial and is of little interest. The specialization order is often considered in applications in computer science, where T0 spaces occur in denotational semantics.
Topologie grossièreEn mathématiques et plus précisément en topologie, la topologie grossière (ou topologie triviale) associée à un ensemble X est la topologie sur X dont les seuls ouverts sont l'ensemble vide et X. Cette topologie est la moins fine de toutes les topologies qu'il est possible de définir sur un ensemble ; intuitivement, tous les points de l'espace topologique ainsi créé sont « groupés ensemble » et ne peuvent pas être distingués du point de vue topologique.