Résumé
La symétrie CPT est une symétrie des lois physiques pour les transformations impliquant de manière simultanée la charge, la parité et le temps. Les efforts de recherche menés à la fin des années 1950 ont révélé la violation de la symétrie P par des phénomènes impliquant la force faible, et il existe des violations connues de la symétrie C ainsi que de la symétrie T. Pendant un temps, la symétrie CP paraissait être conservée pour tous les phénomènes physiques, mais cela a été démenti aussi par la suite. D'un autre côté, il existe un théorème qui dérive la préservation de la symétrie CPT pour tout phénomène physique en postulant l'exactitude des lois quantiques et de l'invariance de Lorentz. De manière spécifique, le théorème CPT indique que toute théorie quantique des champs locale invariante au sens de Lorentz avec un hamiltonien hermitien doit posséder une symétrie CPT. Le théorème CPT apparut pour la première fois de manière implicite dans le travail de Julian Schwinger en 1951 afin de prouver la corrélation entre spin et statistique. En 1954, Gerhart Lüders et Wolfgang Pauli ont établi des démonstrations explicites de ce théorème, ce qui fait qu'il est parfois appelé théorème de Lüders-Pauli. Dans le même temps et de manière indépendante, le théorème a aussi été démontré par John Stewart Bell. Ces preuves se basent sur la validité de l'invariance de Lorentz et le principe de localité dans l'interaction des champs quantiques. Par la suite, Res Jost a donné une démonstration plus générale dans le cadre d'une théorie du champ quantique axiomatique. Un argument qualitatif peut être fourni par la considération suivante : prenons une transformation de Lorentz dans une direction fixée, que nous appellerons . Si l'on complexifie le groupe de Lorentz, une translation imaginaire avec pour paramètre de translation résultera en la transformation de en et de en . Si l'on y ajoute une rotation supplémentaire de dans le plan xy, on obtient une combinaison de P et de CT.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.