Résumé
Le groupe de Poincaré ou symétrie de Poincaré est l'ensemble des isométries de l'espace-temps de Minkowski. Il a la propriété d'être un groupe de Lie non compact à 10 dimensions. Sa version complète inclut quatre types de symétrie : les translations (c'est-à-dire les déplacements) dans le temps et l'espace, formant le groupe de Lie abélien des translations sur l'espace-temps ; les rotations dans l'espace, qui forment le groupe de Lie non abélien des rotations tridimensionnelles ; les transformations de Lorentz propres et orthochrones, laissant inchangés le sens du temps et l'orientation de l'espace ; le renversement du temps T et la parité P (renversement des coordonnées d'espace), qui forment un groupe discret (Id ; T ; P ; PT). Les deux derniers types de symétrie forment les transformations de Lorentz, mais pour former le groupe de Lorentz, il est nécessaire d'y inclure les rotations. Les trois premiers types de symétrie engendrent le groupe de Poincaré restreint, auquel il faut ajouter la parité et le renversement du temps pour obtenir le groupe de Poincaré complet. On dit que les éléments invariants suivant ce groupe satisfont l'invariance de Poincaré ou invariance relativiste. L'éponyme du groupe de Poincaré est le mathématicien français Henri Poincaré (-). Le groupe de symétrie est ainsi désigné à la suite d'Eugene Wigner (-). Le groupe de Poincaré est aussi connu comme le groupe de Lorentz inhomogène. En physique et en mathématiques, le groupe de Poincaré est le groupe des isométries d'un espace de Minkowski : c'est le groupe des transformations affines de l'espace-temps de la relativité restreinte qui laissent invariant l'intervalle d'espace-temps. L'espace de Minkowski est un espace affine (réel et de dimension quatre) muni d'une distance hyperbolique (la métrique de Lorentz). Dans un tel espace, la distance entre deux évènements et vérifie : Le groupe de Poincaré est l'ensemble des transformations conservant cette structure, noté , qui regroupe les translations, rotations, transformations de Lorentz propres et orthochrones (boost), parité et renversement du temps.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.