Long-range dependence (LRD), also called long memory or long-range persistence, is a phenomenon that may arise in the analysis of spatial or time series data. It relates to the rate of decay of statistical dependence of two points with increasing time interval or spatial distance between the points. A phenomenon is usually considered to have long-range dependence if the dependence decays more slowly than an exponential decay, typically a power-like decay. LRD is often related to self-similar processes or fields. LRD has been used in various fields such as internet traffic modelling, econometrics, hydrology, linguistics and the earth sciences. Different mathematical definitions of LRD are used for different contexts and purposes. One way of characterising long-range and short-range dependent stationary process is in terms of their autocovariance functions. For a short-range dependent process, the coupling between values at different times decreases rapidly as the time difference increases. Either the autocovariance drops to zero after a certain time-lag, or it eventually has an exponential decay. In the case of LRD, there is much stronger coupling. The decay of the autocovariance function is power-like and so is slower than exponential. A second way of characterizing long- and short-range dependence is in terms of the variance of partial sum of consecutive values. For short-range dependence, the variance grows typically proportionally to the number of terms. As for LRD, the variance of the partial sum increases more rapidly which is often a power function with the exponent greater than 1. A way of examining this behavior uses the rescaled range. This aspect of long-range dependence is important in the design of dams on rivers for water resources, where the summations correspond to the total inflow to the dam over an extended period. The above two ways are mathematically related to each other, but they are not the only ways to define LRD.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.