Explore les théorèmes de Gauss et de Green dans le calcul vectoriel, en présentant leurs applications à travers des exemples pratiques et des interprétations géométriques.
Explore les équations non linéaires, la bisection, les méthodes de points fixes, le contrôle des erreurs et les interprétations graphiques des points fixes.
Explore les intégrales de la courbe des champs vectoriels, en mettant l'accent sur les considérations d'énergie pour le mouvement contre ou avec le vent, et introduit des vecteurs tangents et normaux unitaires.