Concepts associés (19)
Cohérence (logique)
En logique mathématique, la cohérence, ou consistance, d'une théorie axiomatique peut se définir de deux façons, soit par référence à la déduction : il n'est pas possible de tout démontrer à partir des axiomes de la théorie, soit par référence à la sémantique de la théorie : celle-ci possède des réalisations qui lui donnent un sens. La première définition est syntaxique au sens où elle utilise des déductions ou démonstrations, qui sont des objets finis.
Transfer principle
In model theory, a transfer principle states that all statements of some language that are true for some structure are true for another structure. One of the first examples was the Lefschetz principle, which states that any sentence in the first-order language of fields that is true for the complex numbers is also true for any algebraically closed field of characteristic 0. An incipient form of a transfer principle was described by Leibniz under the name of "the Law of Continuity".
Théorème de Lindström
En logique mathématique, le théorème de Lindström (publié en 1969 par le logicien suédois Per Lindström) caractérise la logique du premier ordre comme suit : en gros, il s'agit de la logique qui possède le théorème de compacité et le théorème de Löwenheim-Skolem descendant. L'énoncé du théorème est le suivant : Soit L une logique abstraite (i.e. qui vérifie certaines conditions, voir plus loin) qui est plus expressive que la logique du premier ordre.
Théorème de complétude de Gödel
En logique mathématique, le théorème de complétude du calcul des prédicats du premier ordre dresse une correspondance entre la sémantique et les démonstrations d'un système de déduction en logique du premier ordre. En termes intuitifs le théorème de complétude construit un pont entre vérité et démontrabilité formelle : tout énoncé vrai est démontrable.
Théorème de l'idéal premier dans une algèbre de Boole
En mathématiques, un théorème de l'idéal premier garantit l'existence de certains types de sous-ensembles dans une algèbre. Un exemple courant est le théorème de l'idéal premier dans une algèbre de Boole, qui énonce que tout idéal d'une algèbre de Boole est inclus dans un idéal premier. Une variante de cet énoncé pour filtres sur des ensembles est connue comme le théorème de l'ultrafiltre.
Elementary class
In model theory, a branch of mathematical logic, an elementary class (or axiomatizable class) is a class consisting of all structures satisfying a fixed first-order theory. A class K of structures of a signature σ is called an elementary class if there is a first-order theory T of signature σ, such that K consists of all models of T, i.e., of all σ-structures that satisfy T. If T can be chosen as a theory consisting of a single first-order sentence, then K is called a basic elementary class.
Paradoxe de Skolem
En logique mathématique et en philosophie analytique, le paradoxe de Skolem est une conséquence troublante du théorème de Löwenheim-Skolem en théorie des ensembles. Il affirme qu'une théorie des ensembles, comme ZFC, si elle a un modèle, a un modèle dénombrable, bien que l'on puisse par ailleurs définir une formule qui exprime l'existence d'ensembles non dénombrables. C'est un paradoxe au sens premier de ce terme : il va contre le sens commun, mais ce n'est pas une antinomie, une contradiction que l'on pourrait déduire dans la théorie.
Modèle non standard de l'arithmétique
En logique mathématique, un modèle non standard de l'arithmétique est un modèle non standard de l'arithmétique de Peano, qui contient des nombres non standards. Le modèle standard de l'arithmétique contient exactement les nombres naturels 0, 1, 2, etc. Les éléments du domaine de tout modèle de l'arithmétique de Peano sont ordonnés linéairement et possèdent un segment initial isomorphe aux nombres naturels standards. Un modèle non standard est un modèle qui contient également des éléments en dehors de ce segment initial.
Théorie des modèles finis
La théorie des modèles finis est un sous-domaine de la théorie des modèles. Cette dernière est une branche de la logique mathématique qui traite de la relation entre un langage formel (la syntaxe) et ses interprétations (ses sémantiques). La théorie des modèles finis est la restriction de la théorie des modèles aux interprétations de structures finies, donc qui sont définies sur un ensemble (un univers) fini. Ses applications principales sont la théorie des bases de données, la complexité descriptive et la théorie des langages formels.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.