Algèbre de Boole (logique)Lalgèbre de Boole, ou calcul booléen, est la partie des mathématiques qui s'intéresse à une approche algébrique de la logique, vue en termes de variables, d'opérateurs et de fonctions sur les variables logiques, ce qui permet d'utiliser des techniques algébriques pour traiter les expressions à deux valeurs du calcul des propositions. Elle fut lancée en 1854 par le mathématicien britannique George Boole. L'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Quantification (logique)vignette|Symboles mathématiques des deux quantificateurs logiques les plus courants.|236px En mathématiques, les expressions « pour tout » (ou « quel que soit ») et « il existe », utilisées pour formuler des propositions mathématiques dans le calcul des prédicats, sont appelées des quantifications. Les symboles qui les représentent en langage formel sont appelés des quantificateurs (ou autrefois des quanteurs). La quantification universelle (« pour tout ... » ou « quel que soit ... ») se dénote par le symbole ∀ (un A à l'envers).
Algèbre cylindriqueEn mathématiques, la notion d'algèbre cylindrique, inventée par Alfred Tarski, est survenue naturellement dans l'algébrisation de la logique du premier ordre équationnelle. Une algèbre cylindrique de dimension (où est un nombre ordinal) est une structure algébrique tel que est une algèbre booléenne, un opérateur unaire sur pour tout , et un élément distingué de pour tout et , de telle sorte que: (C1) (C2) (C3) (C4) (C5) (C6) Si , alors (C7) Si , alors En supposant une présentation de la logique du premier ordre sans symboles de fonction, l'opérateur modélise quantification existentielle sur la variable dans la formule tandis que l'opérateur l'égalité des modèles des variables et .
Logique algébriqueEn logique mathématique, la logique algébrique est le raisonnement obtenu en manipulant des équations avec des variables libres. Ce qui est maintenant généralement appelé la logique algébrique classique se concentre sur l'identification et la description algébrique des modèles adaptés à l'étude de différentes logiques (sous la forme de classes d'algèbres qui constituent la sémantique algébrique de ces systèmes déductifs) et aux problèmes connexes, comme la représentation et la dualité.