Couvre la théorie de la dimension des anneaux, y compris l'additivité de la dimension et de la hauteur, Hauptidealsatz de Krull, et la hauteur des intersections générales complètes.
Introduit des courbes planes projectives, des degrés, des composantes, des multiplicités, des nombres d'intersection, des tangentes et des points multiples, aboutissant à l'énoncé du théorème de Bézout et de ses conséquences.
Couvre l'interprétation et l'application des pouvoirs symboliques dans les structures algébriques, en mettant l'accent sur les anneaux Hauptideal Satz et Noetherian de Krull.
Couvre la stabilité à petite échelle dans les systèmes de gradient, en mettant l'accent sur les propriétés de la trajectoire et l'attraction du point d'équilibre.