Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'estimation du maximum de vraisemblance, la vraisemblance du log de profil, l'inférence sur les coefficients, la quasi-vraisemblance, la comparaison de modèle et la méthode REML.
Explore le modèle conditionnel gaussien pour la régression linéaire et les propriétés des données gaussiennes, illustré par l'exemple de comparaison du traitement par pierre rénale.
Couvre le risque dans les décisions d'investissement, l'évaluation des flux de trésorerie incertains, le taux de rendement, les rendements du portefeuille et l'utilité de la variation moyenne.
Explique les estimateurs statistiques pour les variables aléatoires et les distributions gaussiennes, en se concentrant sur les fonctions d'erreur pour l'intégration.
Explore les modèles de signaux paramétriques, y compris les processus AR et les chaînes de Markov, couvrant la synthèse, l'analyse et les structures de corrélation.