Résumé
vignette|Visualisation de la loi des grands nombres En mathématiques, la loi des grands nombres permet d’interpréter la probabilité comme une fréquence de réalisation, justifiant ainsi le principe des sondages, et présente l’espérance comme une moyenne. Plus formellement, elle signifie que la moyenne empirique, calculée sur les valeurs d’un échantillon, converge vers l’espérance lorsque la taille de l’échantillon tend vers l’infini. Plusieurs théorèmes expriment cette loi, pour différents types de convergence en théorie des probabilités. La loi faible des grands nombres met en évidence une convergence en probabilité, tandis que la loi forte des grands nombres donne une convergence presque sûre. La convergence ne s’applique pas pour des lois de probabilité sans espérance, comme la loi de Cauchy. D’autres théorèmes affinent l’énoncé de cette loi, comme le théorème central limite et la loi du logarithme itéré, qui précisent la vitesse de convergence, ou le théorème de Glivenko-Cantelli sur la convergence de la fonction de répartition empirique. Lors d’un lancer d’une pièce de monnaie équilibrée, les deux côtés « pile » et « face » apparaissent de façon équiprobable pour des raisons de symétrie : on ne s’attend pas plus à l’un ou à l’autre côté. Cette mesure de l’attente s’appuie souvent sur une considération statistique : sur un grand nombre de lancers, on observe à peu près autant d’occurrences pour chaque côté de la pièce, même s’il est rare d’en obtenir exactement autant. En réalité, le nombre d’occurrences pour pile est différent du nombre d’occurrences pour face, avec une différence qui a tendance à s’accroître quand on augmente le nombre de lancers. Mais la fréquence des occurrences de chaque côté se rapproche de 1/2. De même, lors de lancers d’un dé équilibré les six faces n’apparaîtront pas aussi souvent les unes que les autres en pratique, mais la fréquence d’apparition de chaque face sera proche de 1/6. Ce constat ne se cantonne pas aux situations d’équiprobabilité.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.