Résumé
vignette|Visualisation de la loi des grands nombres En mathématiques, la loi des grands nombres permet d’interpréter la probabilité comme une fréquence de réalisation, justifiant ainsi le principe des sondages, et présente l’espérance comme une moyenne. Plus formellement, elle signifie que la moyenne empirique, calculée sur les valeurs d’un échantillon, converge vers l’espérance lorsque la taille de l’échantillon tend vers l’infini. Plusieurs théorèmes expriment cette loi, pour différents types de convergence en théorie des probabilités. La loi faible des grands nombres met en évidence une convergence en probabilité, tandis que la loi forte des grands nombres donne une convergence presque sûre. La convergence ne s’applique pas pour des lois de probabilité sans espérance, comme la loi de Cauchy. D’autres théorèmes affinent l’énoncé de cette loi, comme le théorème central limite et la loi du logarithme itéré, qui précisent la vitesse de convergence, ou le théorème de Glivenko-Cantelli sur la convergence de la fonction de répartition empirique. Lors d’un lancer d’une pièce de monnaie équilibrée, les deux côtés « pile » et « face » apparaissent de façon équiprobable pour des raisons de symétrie : on ne s’attend pas plus à l’un ou à l’autre côté. Cette mesure de l’attente s’appuie souvent sur une considération statistique : sur un grand nombre de lancers, on observe à peu près autant d’occurrences pour chaque côté de la pièce, même s’il est rare d’en obtenir exactement autant. En réalité, le nombre d’occurrences pour pile est différent du nombre d’occurrences pour face, avec une différence qui a tendance à s’accroître quand on augmente le nombre de lancers. Mais la fréquence des occurrences de chaque côté se rapproche de 1/2. De même, lors de lancers d’un dé équilibré les six faces n’apparaîtront pas aussi souvent les unes que les autres en pratique, mais la fréquence d’apparition de chaque face sera proche de 1/6. Ce constat ne se cantonne pas aux situations d’équiprobabilité.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (31)
MATH-230: Probability
Le cours est une introduction à la théorie des probabilités. Le but sera d'introduire le formalisme moderne (basé sur la notion de mesure) et de lier celui-ci à l'aspect "intuitif" des probabilités.
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-232: Probability and statistics
A basic course in probability and statistics
Afficher plus
Séances de cours associées (74)
Variables aléatoires et valeur prévue
Introduit des variables aléatoires, des distributions de probabilité et des valeurs attendues au moyen d'exemples pratiques.
Théorème de la limite centrale : Méthode Delta multivariée
Explore le théorème de la limite centrale, le théorème de Slutsky et la méthode du delta multivarié en probabilité et en convergence de distribution.
Théorie de Kolmogorov: Concepts fondamentaux
Explore les concepts de base de la théorie de Kolmogorov, en se concentrant sur les faits expérimentaux clés et en dérivant la quatrième loi de Kolmogorov.
Afficher plus
Publications associées (132)
Concepts associés (30)
Law of averages
The law of averages is the commonly held belief that a particular outcome or event will, over certain periods of time, occur at a frequency that is similar to its probability. Depending on context or application it can be considered a valid common-sense observation or a misunderstanding of probability. This notion can lead to the gambler's fallacy when one becomes convinced that a particular outcome must come soon simply because it has not occurred recently (e.g.
Fonction caractéristique (probabilités)
En mathématiques et plus particulièrement en théorie des probabilités et en statistique, la fonction caractéristique d'une variable aléatoire réelle est une quantité qui détermine de façon unique sa loi de probabilité. Si cette variable aléatoire a une densité, alors la fonction caractéristique est la transformée de Fourier inverse de la densité. Les valeurs en zéro des dérivées successives de la fonction caractéristique permettent de calculer les moments de la variable aléatoire.
Paradoxe du singe savant
Le paradoxe du singe savant est un théorème selon lequel un singe qui tape indéfiniment et au hasard sur le clavier d’une machine à écrire pourra « presque sûrement » écrire un texte donné. Dans ce contexte, « presque sûrement » est une expression mathématique ayant un sens précis, et le singe n'est pas vraiment un singe mais une métaphore pour un mécanisme abstrait qui produit une séquence aléatoire de lettres à l'infini. Le théorème illustre les dangers de raisonner sur l'infini en imaginant un très grand nombre, mais fini, et vice versa.
Afficher plus
MOOCs associés (8)
Initiation à la Programmation en C++ [retired]
Le cours suivi propose une initiation aux concepts de base de la programmation impérative tels que : variables, expressions, structures de contrôle, fonctions/méthodes, en les illustrant dans la synta
Introduction à la Programmation Orientée Objet (en C++) [retired]
Le cours suivi propose une introduction aux concepts de base de la programmation orientée objet tels que : encapsulation et abstraction, classes/objets, attributs/méthodes, héritage, polymorphisme, ..
Initiation à la Programmation en C++
Ce cours initie à la programmation en utilisant le langage C++. Il ne présuppose pas de connaissance préalable. Les aspects plus avancés (programmation orientée objet) sont donnés dans un cours suivan
Afficher plus