Information mutuelleDans la théorie des probabilités et la théorie de l'information, l'information mutuelle de deux variables aléatoires est une quantité mesurant la dépendance statistique de ces variables. Elle se mesure souvent en bit. L'information mutuelle d'un couple de variables représente leur degré de dépendance au sens probabiliste. Ce concept de dépendance logique ne doit pas être confondu avec celui de causalité physique, bien qu'en pratique l'un implique souvent l'autre.
Modèle d'évaluation des actifs financiersLe modèle d'évaluation des actifs financiers (MEDAF, ou en anglais Capital asset pricing model) est un modèle financier qui fournit une estimation du taux de rentabilité attendu par le marché pour un actif financier en fonction de son risque systématique. Le MEDAF ou capital asset pricing model explique la réalisation de l'équilibre du marché par l'offre et la demande pour chaque titre. Il permet de déterminer la rentabilité d'un actif risqué par son risque systématique. MEDAF est une traduction approximative de la version anglophone.
Uncorrelatedness (probability theory)In probability theory and statistics, two real-valued random variables, , , are said to be uncorrelated if their covariance, , is zero. If two variables are uncorrelated, there is no linear relationship between them. Uncorrelated random variables have a Pearson correlation coefficient, when it exists, of zero, except in the trivial case when either variable has zero variance (is a constant). In this case the correlation is undefined.
Filtre de Kalmanvignette| Concept de base du filtre de Kalman. En statistique et en théorie du contrôle, le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d'un système dynamique à partir d'une série de mesures incomplètes ou bruitées. Le filtre a été nommé d'après le mathématicien et informaticien américain d'origine hongroise Rudolf Kálmán. Le filtre de Kalman est utilisé dans une large gamme de domaines technologiques (radar, vision électronique, communication...).
Loi de probabilité à plusieurs variablesvignette|Représentation d'une loi normale multivariée. Les courbes rouge et bleue représentent les lois marginales. Les points noirs sont des réalisations de cette distribution à plusieurs variables. Dans certains problèmes interviennent simultanément plusieurs variables aléatoires. Mis à part les cas particuliers de variables indépendantes (notion définie ci-dessous) et de variables liées fonctionnellement, cela introduit la notion de loi de probabilité à plusieurs variables autrement appelée loi jointe.
Coefficient bêtaLe coefficient bêta est, en finance, une mesure de la volatilité du prix d'un actif par rapport à celle d'un marché financier. Il s'agit d'un coefficient clef du modèle d'évaluation des actifs financiers (MEDAF). Il est un indicateur utile dans la mise en place d'une stratégie de diversification des risques. Le bêta est le rapport entre la rentabilité de cet actif et celle du marché puisque la volatilité concerne les variations de cours qui sont un élément essentiel de rentabilité.
AutocovarianceLa fonction d'autocovariance d'un processus stochastique permet de caractériser les dépendances linéaires existant au sein de ce processus. Si est un processus stationnaire au sens faible alors et pour n'importe quels entiers naturels . Dans ce cas et il suffit alors de définir les autocovariances par la fonction qui à tout associe . La fonction d'autocovariance apparaît alors comme la covariance de ce processus avec une version décalée de lui-même. On appelle l'autocovariance d'ordre .
Normally distributed and uncorrelated does not imply independentIn probability theory, although simple examples illustrate that linear uncorrelatedness of two random variables does not in general imply their independence, it is sometimes mistakenly thought that it does imply that when the two random variables are normally distributed. This article demonstrates that assumption of normal distributions does not have that consequence, although the multivariate normal distribution, including the bivariate normal distribution, does.
Cross-covariance matrixIn probability theory and statistics, a cross-covariance matrix is a matrix whose element in the i, j position is the covariance between the i-th element of a random vector and j-th element of another random vector. A random vector is a random variable with multiple dimensions. Each element of the vector is a scalar random variable. Each element has either a finite number of observed empirical values or a finite or infinite number of potential values. The potential values are specified by a theoretical joint probability distribution.
Distance correlationIn statistics and in probability theory, distance correlation or distance covariance is a measure of dependence between two paired random vectors of arbitrary, not necessarily equal, dimension. The population distance correlation coefficient is zero if and only if the random vectors are independent. Thus, distance correlation measures both linear and nonlinear association between two random variables or random vectors. This is in contrast to Pearson's correlation, which can only detect linear association between two random variables.