Resolution (algebra)In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of modules (or, more generally, of s of an ), which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions.
Inverse image functorIn mathematics, specifically in algebraic topology and algebraic geometry, an inverse image functor is a contravariant construction of sheaves; here “contravariant” in the sense given a map , the inverse image functor is a functor from the of sheaves on Y to the category of sheaves on X. The is the primary operation on sheaves, with the simplest definition. The inverse image exhibits some relatively subtle features. Suppose we are given a sheaf on and that we want to transport to using a continuous map .
Germe (mathématiques)La notion de germe en mathématiques capture les propriétés « locales » d'un phénomène, par exemple la coïncidence infinitésimale entre fonctions. C'est une notion initialement analytique qui possède en fait une structure algébrique naturelle, et qui apparaît naturellement en géométrie algébrique et en théorie des groupes de Lie. La notion de germe permet d'approcher ce qui se passe localement sur un objet mathématique (espace topologique, variété différentielle, faisceau...).
Lemme de NakayamaLe lemme de Nakayama est un résultat fondamental d'algèbre commutative. Il doit son origine à , et Wolfgang Krull. Un énoncé général est le suivant : La démonstration de cet énoncé général se ramène à celle du cas particulier N = 0, c'est pourquoi le lemme de Nakayama est souvent énoncé sous cette forme : Le corollaire suivant est parfois également énoncé sous le nom de « lemme de Nakayama » : (En effet, pour tout élément a de R, 1 + a est inversible.) Soit une famille génératrice de M. Il existe des tels que pour tout i, .
Cohomologie des faisceauxLes groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines. Les groupes de cohomologie d'un faisceau de groupes abéliens sont les groupes de cohomologie du complexe de cochaines : où est une résolution injective du faisceau , et désigne le groupe abélien des sections globales de . A unique isomorphisme canonique près, ces groupes ne dépendent pas de la résolution injective choisie. Le zéroième groupe est canoniquement isomorphe à .
Ringed spaceIn mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of rings called a structure sheaf. It is an abstraction of the concept of the rings of continuous (scalar-valued) functions on open subsets. Among ringed spaces, especially important and prominent is a locally ringed space: a ringed space in which the analogy between the stalk at a point and the ring of germs of functions at a point is valid.
Coherent sheafIn mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an , and so they are closed under operations such as taking , , and cokernels.
Faisceau (mathématiques)En mathématiques, un faisceau est un outil permettant de suivre systématiquement des données définies localement et rattachées aux ouverts d'un espace topologique. Les données peuvent être restreintes à des ouverts plus petits, et les données correspondantes à un ouvert sont équivalentes à l'ensemble des données compatibles correspondantes aux ouverts plus petits couvrant l'ouvert d'origine. Par exemple, de telles données peuvent consister en des anneaux de fonctions réelles continues ou lisses définies sur chaque ouvert.
Spectre d'anneauEn mathématiques, le spectre premier d'un anneau commutatif unitaire A désigne l'ensemble des idéaux premiers de A. Cet ensemble est muni d'une topologie (de Zariski) et d'un faisceau d'anneaux commutatifs unitaires qui en font un espace topologique annelé en anneaux locaux. Cet espace est alors appelé un schéma affine et il sert d'espace de base pour la construction des schémas en géométrie algébrique. Le spectre d'un anneau commutatif A est l'ensemble de ses idéaux premiers. On le note Spec A.
Anneau localEn mathématiques, et plus particulièrement en algèbre commutative, un anneau local est un anneau commutatif possédant un unique idéal maximal. En géométrie algébrique, les anneaux locaux représentent les fonctions définies au voisinage d'un point donné. Pour tout anneau A, les propriétés suivantes sont équivalentes : A est local ; ses éléments non inversibles forment un idéal (qui sera alors l'idéal maximal de A et coïncidera avec son radical de Jacobson) ; ses éléments non inversibles appartiennent à un même idéal propre ; pour tout élément a de A, soit a soit 1 – a est inversible ; pour tout élément a de A, soit a soit 1 – a est inversible à gauche ; il existe un idéal maximal M tel que pour tout élément a de M, 1 + a est inversible.