In mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of rings called a structure sheaf. It is an abstraction of the concept of the rings of continuous (scalar-valued) functions on open subsets.
Among ringed spaces, especially important and prominent is a locally ringed space: a ringed space in which the analogy between the stalk at a point and the ring of germs of functions at a point is valid.
Ringed spaces appear in analysis as well as complex algebraic geometry and the scheme theory of algebraic geometry.
Note: In the definition of a ringed space, most expositions tend to restrict the rings to be commutative rings, including Hartshorne and Wikipedia. "Éléments de géométrie algébrique", on the other hand, does not impose the commutativity assumption, although the book mostly considers the commutative case.
A ringed space is a topological space together with a sheaf of rings on . The sheaf is called the structure sheaf of .
A locally ringed space is a ringed space such that all stalks of are local rings (i.e. they have unique maximal ideals). Note that it is not required that be a local ring for every open set ; in fact, this is almost never the case.
An arbitrary topological space can be considered a locally ringed space by taking to be the sheaf of real-valued (or complex-valued) continuous functions on open subsets of . The stalk at a point can be thought of as the set of all germs of continuous functions at ; this is a local ring with the unique maximal ideal consisting of those germs whose value at is .
If is a manifold with some extra structure, we can also take the sheaf of differentiable, or complex-analytic functions. Both of these give rise to locally ringed spaces.
If is an algebraic variety carrying the Zariski topology, we can define a locally ringed space by taking to be the ring of rational mappings defined on the Zariski-open set that do not blow up (become infinite) within .
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, and topological algebraic geometry.
The theme of the working group varies from year to year. Examples of recent topics studied include: Galois theory of ring spectra, duality in algebra and topology, topological algebraic geometry and t
En mathématiques, les schémas sont les objets de base de la géométrie algébrique, généralisant la notion de variété algébrique de plusieurs façons, telles que la prise en compte des multiplicités, l'unicité des points génériques et le fait d'autoriser des équations à coefficients dans un anneau commutatif quelconque.
Une variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.
En mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Classical Serre-Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multipl ...
Given any twisting cochain t:C→A , where C is a connected, coaugmented chain coalgebra and A is an augmented chain algebra over an arbitrary commutative ring R, we construct a twisted extension of chain complexes Full-size image (1 K) of which both the wel ...
Let X be a simplicial set. We construct a novel adjunction be- tween the categories RX of retractive spaces over X and ComodX+ of X+- comodules, then apply recent work on left-induced model category structures [5], [16] to establish the existence of a left ...