Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'organisation topographique du cerveau, en mettant l'accent sur les représentations sensorielles et les techniques de neuroimagerie hémodynamique.
Explore les régressions OLS pour les prix des maisons, couvrant les valeurs aberrantes, les observations influentes, les spécifications du modèle et les stratégies de sélection.
Discute de la géométrie des moindres carrés, en explorant les perspectives des lignes et des colonnes, les hyperplans, les projections, les résidus et les vecteurs uniques.
Explore les filtres de Kalman linéarisés et étendus, illustrant leur application dans les systèmes non linéaires et l'estimation des paramètres inconnus.
Explore les modèles linéaires, la régression logistique, la descente en gradient et la régression logistique multi-classes avec des applications pratiques et des exemples.
Explore les modèles linéaires pour la classification, y compris les modèles paramétriques, la régression et la régression logistique, ainsi que les mesures d'évaluation des modèles et les classificateurs de marge maximum.
Explore l'estimation du maximum de vraisemblance dans les modèles linéaires, couvrant le bruit gaussien, l'estimation de la covariance et les machines vectorielles de support pour les problèmes de classification.