Étant donnés trois points non alignés A, B et C du plan, il existe quatre cercles tangents aux trois droites (AB), (AC) et (BC). Ce sont le cercle inscrit (celui qui est intérieur au triangle) et les cercles exinscrits du triangle ABC.
Bissectrice
Un cercle tangent aux trois droites (AB), (BC), (CA) doit posséder un centre équidistant de ces trois droites. Or l'ensemble des points équidistants de deux droites sécantes (d1) et (d2) forme deux droites perpendiculaires, constituées des quatre demi-droites bissectrices chacune d'un des quatre secteurs angulaires construits par les droites (d1) et (d2), et appelées bissectrices des droites (d1) et (d2).
Si on considère les trois côtés du triangle en tant que droites, on dispose en tout de six bissectrices, deux pour chaque couple de droites. Par chacun des sommets du triangle, passe une bissectrice intérieure (qui rencontre le côté opposé du triangle) et une bissectrice extérieure.
Si une bissectrice issue de A rencontre une bissectrice issue de B alors le point d'intersection, étant équidistant de (AB) et (AC) et équidistant de (BA) et (BC), est à égale distance de (CA) et (CB) et appartient donc à l'une (et une seule) des bissectrices issues de C. Il y a donc quatre points de concours possibles.
Cas du cercle inscrit. Les bissectrices intérieures issues de A et B se coupent à l'intérieur des secteurs angulaires (BAC) et (ABC), c'est-à-dire dans le triangle ABC. Le point d'intersection est donc sur la bissectrice intérieure issue de C et plus exactement sur la demi-droite bissectrice du secteur angulaire (ACB). Le point d'intersection est alors le centre d'un cercle tangent aux trois côtés du triangle. C'est le cercle inscrit.
Cas des cercles exinscrits. Les bissectrices extérieures issues de A et de B se coupent dans le secteur angulaire (ACB) et rencontrent donc, eux aussi, la demi-droite bissectrice de l'angle (ACB). Le point d'intersection est alors le centre d'un cercle tangent au segment [AB] et aux demi-droites d'origines A et B, de supports (AC) et (BC) et ne contenant pas C.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
En histoire de l'architecture, la stéréotomie est l'art de concevoir et fabriquer des volumes complexes en pierre et des assemblages en bois.Ce cours propose une réinterprétation de la stéréotomie
En géométrie plane, une hauteur d'un triangle est une droite passant par un sommet et coupant perpendiculairement le côté opposé à ce sommet (éventuellement prolongé). Les pieds des hauteurs sont les projetés orthogonaux de chacun des sommets sur la droite portant le côté opposé. On donne également le nom de hauteur au segment joignant un sommet et le pied de la hauteur passant par ce sommet, ainsi qu'à la longueur de ce segment, soit la distance séparant un sommet et la droite portant son côté opposé.
En géométrie, le cercle d'Euler d'un triangle (aussi appelé cercle des neuf points, cercle de Feuerbach, cercle de Terquem, cercle médian) est l'unique cercle passant par les neuf points remarquables suivants : Les trois milieux des trois côtés du triangle ; Le pied de chacune des trois hauteurs du triangle ; Le milieu de chacun des trois segments reliant l'orthocentre H à un sommet du triangle. Dans son mémoire E325 présenté en 1763, Euler a considéré séparément les deux cercles circonscrits aux triangles et sans noter leur coïncidence .
En géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique. Les sommets sont alors cocycliques, c'est-à-dire situés sur un même cercle. Si le polygone n'est pas aplati, ce cercle est unique et son centre est le point de concours des médiatrices des côtés. Un polygone n'a pas nécessairement de cercle circonscrit, mais les triangles, les rectangles et les polygones réguliers sont tous inscriptibles.
Explore l'analyse et la construction des surfaces gothiques, en mettant l'accent sur les détails géométriques complexes et les techniques utilisées dans la conception architecturale.
Déplacez-vous dans les principes géométriques de l'architecture gothique, en mettant l'accent sur les techniques de courbure de surface et de stéréotomie.
Shape-changing robots adapt their own morphology to address a wider range of functions or environments than is possible with a fixed or rigid structure. Akin to biological organisms, the ability to alter shape or configuration emerges from the underlying m ...
Berlin2023
,
In this paper, we analyze the grounding resistance of a vertical grounding rod located in an elevated terrain. Tall structures such as wind turbines and mobile phone base stations are often installed in remote and hilly locations to gain more power or to f ...
2019
,
In this paper, we analyze the grounding resistance of a vertical grounding rod located in an elevated terrain. Tall structures such as wind turbines and mobile phone base stations are often installed in remote and hilly locations to gain more power or to f ...