Explore les défis des études observationnelles, en soulignant l'importance de la randomisation et de l'analyse de sensibilité pour tirer des conclusions valables à partir de «données trouvées».
Examine l'inférence causale, en soulignant l'importance de s'engager dans une ontologie pour tirer des inférences causales et choisir des estimands appropriés.
Explore les défis que pose l'insertion de paramètres épidémiologiques à partir des données cliniques, en mettant l'accent sur la COVID-19 et la complexité de l'estimation des rapports de fatalité des infections.
Explore la correspondance en ligne dans des environnements en évolution, en abordant les défis et les solutions pour adapter les algorithmes à l'évolution des données.
Discute de l'impact des séance de courss en direct sur la performance et l'assiduité des étudiants, révélant des effets variés en fonction des niveaux de capacité des étudiants.