Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la régularisation dans les problèmes les moins carrés, favorisant des solutions optimales tout en s'attaquant à des défis comme la non-unité, le mauvais conditionnement et le sur-ajustement.
Explore l'ergodicité géométrique dans les chaînes de Markov et le biais et la variance des estimateurs, en mettant en évidence la quantification des pertes d'efficacité.
Discute de la géométrie des moindres carrés, en explorant les perspectives des lignes et des colonnes, les hyperplans, les projections, les résidus et les vecteurs uniques.
Explore la correspondance des données non linéaires avec des dimensions plus élevées à l'aide de la SVM et couvre l'expansion des caractéristiques polynomiales, la régularisation, les implications sonores et les méthodes d'ajustement des courbes.
Couvre la régression quantile, en se concentrant sur l'optimisation linéaire pour prédire les résultats et discuter de la sensibilité aux valeurs aberrantes, de la formulation des problèmes et de la mise en œuvre pratique.
Couvre les bases de la régression linéaire, y compris l'ingénierie des caractéristiques, l'apprentissage supervisé ou non supervisé, et minimise la fonction de coût.