Explore les problèmes d'optimisation convexe, les critères d'optimalité, les problèmes équivalents et les applications pratiques dans le transport et la robotique.
Explore les sous-gradients dans les fonctions convexes, mettant l'accent sur les scénarios et les propriétés des subdifférentiels non dissociables mais convexes.
Couvre les bases de l'optimisation convexe, y compris les problèmes mathématiques, les minimiseurs et les concepts de solution, en mettant l'accent sur des méthodes efficaces et des applications pratiques.
Couvre des exercices sur l'optimisation convexe, en se concentrant sur la formulation et la résolution de problèmes d'optimisation en utilisant YALMIP et des solveurs comme GUROBI et MOSEK.