Couvre l'adjonction entre les ensembles simpliciaux et les catégories enrichies en simpliciation, y compris la préservation des inclusions et la construction des catégories homotopiques.
Explore les limites et les limites dans les catégories de functeurs, en mettant l'accent sur les égaliseurs, les retraits et leur importance dans la théorie des catégories.
Couvre la combinatoire de la catégorie simplex et son équivalence aux espaces topologiques, ainsi que le concept de catégories foncteur pour les objets cosimpliciels et simpliciaux.
Introduit la construction de quasi-catégories à partir de catégories enrichies de Kan en définissant des catégories simplifiées et en construisant le foncteur nerveux simplicial.