vignette|droite|Diagramme de Nyquist de la fonction de transfert . Le critère de stabilité de Nyquist est une règle graphique utilisée en automatique et en théorie de la stabilité, qui permet de déterminer si un système dynamique est stable. Il a été formulé indépendamment par deux électrotechniciens : l'Allemand Felix Strecker de Siemens en 1930 et l'Américain Harry Nyquist des Laboratoires Bell en 1932. Cette construction, qui exploite le diagramme de Nyquist des circuits à boucle ouverte, permet de se dispenser du calcul des pôles et des zéros des fonctions de transfert (bien qu'il faille connaître le nombre et le type des singularités du demi-plan réel). Elle s'applique à des circuits dont la fonction de transfert n'est pas nécessairement une fonction rationnelle, comme les boucles à retard. Contrairement au diagramme de Bode, il permet de travailler sur des fonctions de transferts à singularités réelles. En outre, il se généralise de façon naturelle aux systèmes multiplexés type « entrées multiples, sorties multiples », courants en avionique. Le critère de Nyquist est très largement employé en électronique et en régulation, sans préjudice d'autres domaines, pour la conception et l'étude des circuits à contre-réaction. Quoique le critère de Nyquist soit l'un des critères de stabilité les plus généraux, il ne s'applique qu'aux circuits linéaires stationnaires (LTI). Pour les circuits non linéaires, il faut recourir à des critères plus complexes comme ceux de Liapounov ou du disque de stabilité. Malgré son caractère graphique, le critère de Nyquist ne suggère rien de concret sur le caractère stable ou instable d'un circuit : il n'indique pas comment modifier un circuit pour le rendre stable. De ce point de vue, des techniques moins générales comme le diagramme de Bode sont parfois plus utiles pour les concepteurs. Un diagramme de Nyquist est la courbe paramétrique de la réponse fréquentielle d'un circuit automatique. La principale utilisation des diagrammes de Nyquist est l'étude de la stabilité d'un système à contre-réaction.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (16)
Stabilité EBSB
La stabilité EBSB est une forme particulière de stabilité des systèmes dynamiques étudiés en automatique, en traitement du signal et plus spécifiquement en électrotechnique. EBSB signifie Entrée Bornée/Sortie Bornée : si un système est stable EBSB, alors pour toute entrée bornée, la sortie du système l’est également. Un système linéaire invariant et à temps continu dont la fonction transfert est rationnelle et strictement propre est stable EBSB si et seulement si sa réponse impulsionnelle est absolument intégrable, i.
Diagramme de Black
Le diagramme de Black est un graphe utilisé en automatique pour étudier un système. Il représente, dans un repère semi-logarithmique, le gain (en décibels) en fonction de la phase, selon une courbe paramétrée par la pulsation ou la fréquence. Ce diagramme combine en un les deux diagrammes de Bode. Ce diagramme n'est appelé Diagramme de Black qu'en France. Partout ailleurs c'est le diagramme de Nichols. En effet il a été défini par Nichols sur la base de travaux plus anciens de Black qui avait proposé de tracer la phase en fonction du module mais non tracé en décibels.
Root locus analysis
In control theory and stability theory, root locus analysis is a graphical method for examining how the roots of a system change with variation of a certain system parameter, commonly a gain within a feedback system. This is a technique used as a stability criterion in the field of classical control theory developed by Walter R. Evans which can determine stability of the system. The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter (see pole–zero plot).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.