Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Optimisation multidisciplinaireL'Optimisation de Conception Multidisciplinaire (OMD ou MDO, Multidisciplinary Design Optimisation, en anglais) est un domaine d'ingénierie qui utilise des méthodes d'optimisation afin de résoudre des problèmes de conception mettant en œuvre plusieurs disciplines. La MDO permet aux concepteurs d'incorporer les effets de chacune des disciplines en même temps. L'optimum global ainsi trouvé est meilleur que la configuration trouvée en optimisant chaque discipline indépendamment des autres, car l'on prend en compte les interactions entre les disciplines.
Local optimumIn applied mathematics and computer science, a local optimum of an optimization problem is a solution that is optimal (either maximal or minimal) within a neighboring set of candidate solutions. This is in contrast to a global optimum, which is the optimal solution among all possible solutions, not just those in a particular neighborhood of values. Importantly, a global optimum is necessarily a local optimum, but a local optimum is not necessarily a global optimum.
HeuristiqueL'heuristique ou euristique (du grec ancien εὑρίσκω, heuriskô, « je trouve ») est en résolvant des problèmes à partir de connaissances incomplètes. Ce type d'analyse permet d'aboutir en un temps limité à des solutions acceptables. Celles-ci peuvent s'écarter de la solution optimale. Pour Daniel Kahneman, c'est une procédure qui aide à trouver des réponses adéquates, bien que souvent imparfaites à des questions difficiles. Ce système empirique inclut notamment la méthode essai-erreur ou l'analyse statistique des échantillons aléatoires.
Feasible regionIn mathematical optimization, a feasible region, feasible set, search space, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints. This is the initial set of candidate solutions to the problem, before the set of candidates has been narrowed down.
Problème de tournées de véhiculesvignette|Figure illustrant une des solutions d'un problème de tournées avec un dépôt central et 3 véhicules disponibles. Le problème de tournées de véhicules (aussi appelé VRP pour Vehicle Routing Problem) est une classe de problèmes de recherche opérationnelle et d'optimisation combinatoire. Il s'agit de déterminer les tournées d'une flotte de véhicules afin de livrer une liste de clients, ou de réaliser des tournées d'interventions (maintenance, réparation, contrôles) ou de visites (visites médicales, commerciales).